तनाव त्रिअक्षीयता

From Vigyanwiki

इतिहास

1959 में डेविस और कोनेली ने तथाकथित त्रिअक्षीयता कारक की शुरुआत की, जिसे डेविस और कॉनली (1959) में प्रभावी प्रतिबल , सीएफसूत्र (35) द्वारा विभाजित कौशी प्रतिबल पहले प्रमुख अचर के अनुपात के रूप में परिभाषित किया गया था।[1] कॉची  h> प्रतिबल-प्रदिश के पहले अचर को दर्शाता है, कॉची प्रतिबल  के प्रमुख मानो को निरूपित करता है, और औसत प्रतिबल  को दर्शाता है, कौशी विचलनात्मक प्रतिबल  का दूसरा अचर है, कौशी विचलनात्मक प्रतिबल के प्रमुख मानो   को निरूपित करता है, और प्रभावी प्रतिबल को दर्शाता है।

डेविस और कोनेली इस प्रस्ताव में अपने स्वयं के और बाद के शोधों को देखते हुए सही अनुमान से प्रेरित थे कि ऋणात्मक दबाव (गोलाकार प्रतिबल)  उनके द्वारा बल्कि आकर्षक रूप से त्रिअक्षीय प्रतिबल कहा जाता है, धातुओं की नमनीयता के हानि पर प्रबल प्रभाव पड़ता है, और इस प्रभाव का वर्णन करने के लिए कुछ पैरामीटर की आवश्यकता होती है।

विर्ज़बिक्की और सहयोगियों ने मूल , सीएफ जैसे विर्ज़बिक्की एट अल (2005) की तुलना में त्रिअक्षीयता कारक की अल्प संशोधित परिभाषा को स्वीकार किया।[2]

त्रिअक्षीयता कारक नाम बल्कि दुर्भाग्यपूर्ण, अपर्याप्त है, क्योंकि भौतिक दृष्टि से त्रिअक्षीयता कारक अपरूपण बलों के सापेक्ष दबाव बलों के अंशांकित अनुपात या इसके समानुवर्ती ( विचलनात्मक) भाग दोनों के संबंध में प्रतिबल प्रदिश के समानुवर्ती (गोलाकार) भाग के अनुपात को निर्धारित करता है। उनके मॉड्यूली ; , के संदर्भ में व्यक्त किया गया है।

त्रिअक्षीयता कारक त्रिअक्षीय प्रतिबल अवस्थाओं को निम्न आयाम की अवस्थाओं से अलग नहीं करता।

ज़िऑल्कोव्स्कि ने सूचकांक के और संशोधन को अपरूपण बलों की ओर दबाव के माप के रूप में उपयोग करने का प्रस्ताव दिया जो सीएफ ज़िऑल्कोव्स्कि (2022) में सूत्र (8.2) भी प्रत्ययकारिता प्रयास परिकल्पना के रूप में अत्यधिक नहीं है।[3] पदार्थ परीक्षण के संदर्भ में के लिए एक उपयुक्त स्मरक नाम हो सकता है, उदाहरण के लिए दबाव सूचकांक या दबाव कारक हो सकता है।

द्विअक्षीय परीक्षणों में प्रतिबल त्रिअक्षीयता कारक

त्रिअक्षीयता कारक  काफी ध्यान और लोकप्रियता प्राप्त की जब विर्जबिकी और उनके सहयोगियों ने बताया कि केवल दबाव ही नहीं () लेकिन लोड निर्देशांक भी  नमनीय विभंजन और धातुओं के अन्य गुणों को काफी प्रभावित कर सकता है, cf. उदा. विर्ज़बिक्की एट अल (2005)।[2]

द्विअक्षीय परीक्षणों की श्रेणी को इस स्थिति से परिभाषित किया जाता है कि हमेशा प्रतिबल प्रदिश के प्रमुख मानो में से शून्य के बराबर होता है (). 2005 में विर्ज़बिक्की और Xue ने पाया कि द्विअक्षीय परीक्षणों की कक्षा में विचलन के सामान्यीकृत प्रिंसिपल थर्ड इनवेरिएंट और त्रिकोणीय कारक के रूप में अद्वितीय बाधा संबंध सम्मिलित है , सीएफ। Wierzbiki et al (2005) में सूत्र (23)।[2]

प्रतिबल विचलन के सामान्यीकृत तीसरे अचर को परिभाषित किया गया है , , कहाँ  प्रतिबल विचलन के तीसरे अचर को दर्शाता है।

पदार्थ परीक्षण परिणामों की प्रस्तुति में, वर्तमान में सबसे अधिक बार, तथाकथित लोड कोण का उपयोग किया जाता है . भार कोण को संबंध से परिभाषित किया जाता है . हालाँकि, लोड कोण  स्पष्ट (स्पष्ट) भौतिक व्याख्या नहीं है। गणितीय दृष्टिकोण से, लोड कोण कॉची प्रतिबल के प्रक्षेपण के बीच के कोण का वर्णन करता है ऑक्टाहेड्रल प्लेन पर और सबसे बड़े प्रिंसिपल स्ट्रेस का प्रोजेक्शन  अष्टफलकीय तल पर।

चित्र: वैषम्य कोण शिरा निक्षेप कोण की अवधारणाओं का चित्रमय चित्रण।[3]

Ziółkowski ने तिरछा कोण का उपयोग करने का प्रस्ताव दिया  निम्नलिखित संबंध के साथ परिभाषित ,  अपरूपण बलों के मोड के लक्षण वर्णन के लिए, सीएफ। Ziółkowski (2022) में सूत्र (4.2)।[3]तिरछा कोण  कई ठोस और उपयोगी भौतिक-सांख्यिकीय व्याख्याएं हैं। यह वास्तविक कॉची प्रतिबल विचलनकर्ता के प्रस्थान का वर्णन करता है संबंधित संदर्भ शुद्ध अपरूपण से , अर्थात, समान मापांक वाला विचलनकर्ता  लेकिन तीसरे अचर के साथ शून्य के बराबर . फाइल:TF Fig1.tif|thumb|331x331px|फिग। तिरछा कोण की अवधारणाओं का चित्रमय चित्रण  और लोड कोण ज़िओल्कोव्स्की (2022) के बाद।[3]माइक्रोमैकेनिकल संदर्भ में तिर्यकता कोण को (मैक्रोस्कोपिक) कॉची प्रतिबल-प्रदिश के आंतरिक एन्ट्रापी के परिमाण के मैक्रोस्कोपिक माप के रूप में समझा जा सकता है। इस अर्थ में कि इसका मूल्य विशिष्ट मैक्रोस्कोपिक प्रतिबल अवस्था उत्पन्न करने वाले सूक्ष्म शुद्ध कैंची (दिशात्मक द्विध्रुव) की आबादी के क्रम की डिग्री निर्धारित करता है। तिर्यकता कोण का निरपेक्ष मान जितना छोटा होता है, कॉची प्रतिबल-प्रदिश की आंतरिक एन्ट्रापी उतनी ही छोटी होती है।


तिरछा कोण प्रतिबल प्रदिश के अनिसोट्रॉपी कारक (डिग्री) के माप में पैरामीटर के रूप में प्रवेश करता है, जिसे सूत्र के साथ व्यक्त किया जा सकता है , सीएफ। ज़िऑल्कोव्स्कि (2022) में सूत्र (4.5)।[3] सूत्र स्पष्ट करता है कि विशिष्ट मैक्रोस्कोपिक प्रतिबल स्थिति उत्पन्न करने वाली शुद्ध अपरूपण आबादी का आंतरिक क्रम जितना अधिक होता है, अर्थात इसकी एन्ट्रॉपी जितनी कम होती है, मैक्रोस्कोपिक स्ट्रेस प्रदिश की अनिसोट्रॉपी उतनी ही बड़ी होती है।  h> सूत्र के साथ परिभाषित आइसोट्रॉपी कोण को दर्शाता है , , , .

आइसोट्रॉपी कोण बहुत ही सरल और सुविधाजनक तरीके से प्रतिबल टेन्सर के गोलाकार (समानुवर्ती) भाग और डेविएटोरिक (समानुवर्ती) भाग को निकालने में सक्षम बनाता है।

प्रदिश अनिसोट्रॉपी का माप , रिचलेव्स्की द्वारा प्रस्तुत किया गया (1985)[4] और वास्तव में किसी भी डिग्री के टेंसरों पर लागू होता है, सूत्र के साथ परिभाषित किया गया है , .  h> प्रदिश कक्षा के व्यास को निम्नानुसार परिभाषित करता है, , कहाँ  सामान्य तन्यता मानदंड द्वारा उत्पन्न दूरी को दर्शाता है ,  क्या कोई दूसरा क्रम उचित लंबकोणीय (घूर्णन) टेन्सर है . प्रदिश कक्षा का व्यास प्रदिश की कक्षा में किन्हीं दो सदस्यों के बीच की अधिकतम दूरी है .

लोड कोण और तिर्यकता कोण के बीच बहुत ही सरल (रैखिक) कनेक्शन सम्मिलित है .


विर्ज़बिक्की की बाधा संबंध , द्विअक्षीय प्रतिबल अवस्थाओ के लिए मान्य त्रिअक्षीयता कारक और तिर्यकता कोण, cf को जोड़ने वाले निम्नलिखित स्पष्ट संबंधों को प्राप्त करने के लिए तिरछा कोण के संबंध में हल किया जा सकता है। ज़िओल्कोव्स्की (2022)।[3]

फ़ाइल: Tfigure2.tif|अंगूठे|अंजीर। त्रिअक्षीयता कारक के बीच संबंध का चित्रमय चित्रण  और तिरछा कोण  Ziółkowski (2022) के बाद द्विअक्षीय प्रतिबल अवस्थाओ के लिए मान्य।[3]उपरोक्त संबंध  तीन सहभाजन किनारों में तीन आक्षेप ( से संबंध) हैं लेकिन अन्यथा अलग-अलग उपडोमेन हैं, जो द्विअक्षीय परीक्षण प्रतिबल अवस्थाओ के पूरे दो पैरामीटर डोमेन (आधा-विमान) को पूरी तरह से बनाते हैं। स्पष्ट विपरीत संबंध उपरोक्त सूत्रों से आसानी से प्राप्य, संख्यात्मक संगणनाओं के लिए बहुत सुविधाजनक हैं, क्योंकि वे तिर्यकता (लोड) कोण के मान का निर्धारण करने में सक्षम हैं  (प्रतिबल का कर्तन मोड) केवल त्रिअक्षीय कारक के मान से  प्रतिबल विचलन के निर्धारक की गणना करने की आवश्यकता के बिना, जो बड़ी कम्प्यूटेशनल बचत प्रदान करता है। सही उपसूत्र का चयन बहुत आसान है क्योंकि इसका निर्धारण केवल के मूल्य पर ही किया जा सकता है  मानो की विशिष्ट श्रेणी में गिरना। उदाहरण के लिए, कब , तो यह श्रेणी के अंतर्गत आता है ; इस तरह .

संबंध  निम्नलिखित महत्वपूर्ण प्रमेयों और उपप्रमेय के निर्माण और प्रमाण के लिए अनुमति दी गई, cf. ज़िओल्कोव्स्की (2022)।[3]

प्रमेय I. मूल से निकलने वाली त्रिज्यीय रेखाएँ (किरणें)।  द्विअक्षीय परीक्षण डोमेन के निर्देशांक फ्रेम का, अर्थात, आधा-विमान , त्रिअक्षीयता कारक के निरंतर मानो की रेखाएँ हैं और साथ ही, तिर्यकता कोण के निरंतर मानो की रेखाएँ हैं .

प्रमेय द्वितीय। संबंध , , , विमान प्रतिबल की स्थिति के लिए मान्य, तीन साझाकरण किनारों में आक्षेप ( से संबंध) हैं, लेकिन अन्यथा द्विअक्षीय परीक्षण प्रतिबल अवस्थाओ के पूरे डोमेन के अलग-अलग उपडोमेन, लाइन को छोड़कर , जिस पर  के किसी भी मूल्य के लिए .

परिणाम। 'उत्तल महत्वपूर्ण सतह' के स्थिति में, किसी भी प्रकार के 'द्विअक्षीय (विमान) प्रतिबल परीक्षण' की सहायता से, किसी भी 'औसत प्रतिबल' (दबाव) के निश्चित मूल्य के लिए , महत्वपूर्ण प्रभावी प्रतिबल  तिर्यकता (लोड) कोण के केवल मान के लिए निर्धारित किया जा सकता है , और इस प्रकार यह त्रिअक्षीयता कारक के एकल मान के अनुरूप है . फ़ाइल: Tfigure3.tif|thumb|453x453px|चित्र। स्ट्रेस इनवेरिएंट के संदर्भ में द्विअक्षीय परीक्षण डोमेन पैरामीटरकरण का चित्रमय चित्रण .  h> कुछ काल्पनिक उत्तल, समानुवर्ती पदार्थ की महत्वपूर्ण सतह, जैसे, प्लास्टिक यील्ड को चिह्नित करता है। 450 तिरछी रेखाएँ ही दबाव के साथ अवस्थाओ को चिह्नित करती हैं, दीर्घवृत्त चिह्न ही प्रभावी प्रतिबल के साथ अवस्थाओ को चिह्नित करते हैं और मूल से त्रिज्यीय रेखाएं तिर्यकता (लोड) कोण के समान मान के साथ अवस्थाओ को दर्शाती हैं और साथ ही Ziółkowski के बाद त्रिअक्षीय कारक का समान मान (2022)।[3]विषमता (लोड) कोण के किसी भी निश्चित मूल्य के लिए, किसी भी प्रकार के द्विअक्षीय (समतल) प्रतिबल परीक्षण की सहायता से, उत्तल महत्वपूर्ण सतह के स्थिति में , महत्वपूर्ण प्रभावी प्रतिबल  औसत प्रतिबल (दबाव) के केवल तीन मानो के लिए निर्धारित किया जा सकता है , और इस प्रकार त्रिअक्षीयता कारक के तीन मान  तदनुसार  तीन उप डोमेन में।

चित्र: ज़िओल्कोव्स्की (2022) के बाद त्रिअक्षीयता कारक और वैषम्य कोण के बीच संबंध का ग्राफ़िकल चित्रण द्विअक्षीय प्रतिबल अवस्थाओ के लिए मान्य है।[3]

कोरोलरी तिर्यकता (लोड) कोण के प्रभाव की प्रायोगिक परीक्षा में द्विअक्षीय (विमान) परीक्षणों की श्रेणी की सीमाओं के लिए इंगित करता है और बहु-अक्षीय लोडिंग के लिए पदार्थ व्यवहार पर दबाव डालता है। ऐसा इसलिए है, क्योंकि केवल द्विअक्षीय परीक्षणों को निष्पादित करने पर महत्वपूर्ण प्रभावी तनावों की संभावित विविधताओं पर माध्य प्रतिबल और/या तिर्यकता कोण के प्रभाव को मज़बूती से अलग करने के लिए कोई पर्याप्त प्रायोगिक डेटा परिणाम एकत्र नहीं किया जा सकता है। किसी निश्चित दबाव के लिए तिर्यकता कोण का मान और/या किसी निश्चित तिर्यकता कोण के लिए दबाव के तीन मान ऐसे उद्देश्य के लिए संक्षिप्त जानकारी प्रदान करते हैं।

सुविधाजनक संकेतक के रूप में त्रिअक्षीय कारक द्वि-आयामी (समतल) प्रतिबल से प्रतिबल की पूर्ण त्रि-आयामी स्थिति में संक्रमण दर्शाता है

संबंध  द्विअक्षीय (समतल) प्रतिबल अवस्थाओं के लिए मान्य दर्शाता है कि ऐसी स्थिति में, त्रिअक्षीयता कारक के मान हमेशा सीमा में रहने चाहिए, जबकि त्रि-आयामी बहुअक्षीय परीक्षणों के सामान्य स्थिति में, त्रिअक्षीयता कारक सीमा से कोई भी मान ले सकता है। कई प्रायोगिक यांत्रिकी प्रकाशनों में, जिसमें द्विअक्षीय परीक्षणों के परिणाम प्रस्तुत किए जाते हैं, दो-तिहाई मान से अधिक त्रिअक्षीयता कारक के मान का सामना किया जा सकता है जो गलत प्रतीत हो सकता है। हालाँकि,  से अधिक त्रिअक्षीयता कारक का प्रायोगिक अवलोकन यह इंगित करता है कि समतल प्रतिबल परीक्षण की द्विअक्षीयता की स्थिति समाप्त हो गई थी, और प्रतिदर्श में त्रि-आयामी प्रतिबल अवस्था सीएफ ज़िओल्कोव्स्की (2022) सम्मिलित होना प्रारंभ हो गई थी।[3]

चित्र: प्रतिबल अचर के संदर्भ में द्विअक्षीय परीक्षण डोमेन पैरामीटरकरण का चित्रमय चित्रण। कुछ काल्पनिक उत्तल, समदैशिक पदार्थ की महत्वपूर्ण सतह, जैसे, प्लास्टिक उत्पाद को चिह्नित करता है। ज़िओल्कोव्स्की (2022) के बाद 450 तिरछी रेखाएँ एक ही दबाव के साथ अवस्थाओ को चिह्नित करती हैं, दीर्घवृत्त चिह्न एक ही प्रभावी प्रतिबल के साथ और मूल से त्रिज्यीय रेखाएँ तिर्यकता (शिरा निक्षेप) कोण के समान मान के साथ अवस्थाओ को दर्शाती हैं और साथ ही त्रिअक्षीयता कारक के समान मूल्य को दर्शाती हैं।[3]


अनुप्रयोग उदाहरण

प्रतिबल त्रिअक्षीयता में विभंजन यांत्रिकी में महत्वपूर्ण अनुप्रयोग हैं और प्रायः इसका उपयोग उस प्रतिबल अवस्था द्वारा परिभाषित क्षेत्र के अंदर विभंजन (अर्थात नम्य या भंगुर) के प्रकार की भविष्यवाणी करने के लिए किया जा सकता है। उच्च प्रतिबल त्रिअक्षीयता प्रतिबल स्थिति से समतुल्य है जो मुख्य रूप से विचलित होने के अतिरिक्त द्रवस्थैतिक है। उच्च प्रतिबल त्रिअक्षीयता (> 2–3) भंगुर विदलन विभंजन[5] साथ ही अन्यथा नमनीय विभंजन के अंदर गर्तिका के निर्माण को बढ़ावा देता है।[6][7] कम प्रतिबल त्रिअक्षीयता अपरूपण स्खलन के साथ समतुल्य है और इसलिए अधिक नम्यता,[7] साथ ही साथ सामान्य रूप से अधिक प्रबलता का परिणाम होता है।[8] तन्य दरार प्रसार भी प्रतिबल त्रिअक्षीयता से प्रभावित होता है, कम मानो के साथ तेज दरार प्रतिरोध वक्र उत्पन्न करता है।[9] कई विफलता मॉडल जैसे जॉनसन-कुक (J-C) विभंजन मानदंड (प्रायः उच्च प्रतिबल दर व्यवहार के लिए उपयोग किया जाता है),[10] माइक्रोवॉइड सहसंयोजन राइस-ट्रेसी मॉडल, और विभंजन यांत्रिकी J-Q बड़े पैमाने पर उत्पादन करने वाला मॉडल प्रतिबल त्रिअक्षीयता को सम्मिलित करता है।

संदर्भ

  1. Davies, E.A.; Connelly, F.M. (1959). "तनाव-सख्त सामग्री के घूर्णन सिलेंडरों में तनाव वितरण और प्लास्टिक विरूपण". Journal of Applied Mechanics. 26 (1): 25–30. Bibcode:1959JAM....26...25D. doi:10.1115/1.4011918.
  2. 2.0 2.1 2.2 Wierzbicki, T.; Bao, Y.; Lee, Y-W.; Bai, Y. (2005). "अंशांकन और सात फ्रैक्चर मॉडल का मूल्यांकन". International Journal of Mechanical Sciences. 47 (4–5): 719–743. doi:10.1016/j.ijmecsci.2005.03.003.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Ziółkowski, A.G. (2022). "आइसोट्रॉपी कोण और तिरछा कोण का उपयोग करके स्वायत्त वस्तु के रूप में माने जाने वाले कॉची स्ट्रेस टेन्सर का पैरामीट्रिजेशन". Engineering Transactions. 70 (2): 239–286.
  4. Rychlewski, J. (1985). "Zur Abschätzung der Anisotropie (To estimate the anisotropy)". Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 65 (6): 256–258. doi:10.1002/zamm.19850650617.
  5. Soboyejo, W. O. (2003). "12.4.2 Cleavage Fracture". इंजीनियर सामग्री के यांत्रिक गुण. Marcel Dekker. ISBN 0-8247-8900-8. OCLC 300921090.
  6. Fracture mechanics : twenty-fourth volume. Landes, J. D. (John D.), McCabe, Donald E., Boulet, Joseph Adrien Marie., ASTM Committee E-8 on Fatigue and Fracture., National Symposium on Fracture Mechanics (24th : 1992 : Gatlinburg, Tenn.). Philadelphia. p. 89. ISBN 0-8031-1990-9. OCLC 32296916.{{cite book}}: CS1 maint: others (link)
  7. 7.0 7.1 Affonso, Luiz Octavio Amaral. (2013). Machinery Failure Analysis Handbook : Sustain Your Operations and Maximize Uptime. Elsevier Science. pp. 33–42. ISBN 978-0-12-799982-1. OCLC 880756612.
  8. Anderson, T. L. (Ted L.), 1957- (1995). Fracture mechanics : fundamentals and applications (2nd ed.). Boca Raton: CRC Press. p. 87. ISBN 0-8493-4260-0. OCLC 31514487.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Dowling, N. E., Piascik, R. S., Newman, J. C. (1997). Fatigue and Fracture Mechanics: 27th Volume. United States: ASTM. (pp.75)
  10. International Symposium on Ballistics (29th : 2016 : Edinburgh, Scotland), author. (2016). Proceedings 29th International Symposium on Ballistics : Edinburgh, Scotland, UK, 9-13 May 2016. pp. 1136–1137. ISBN 978-1-5231-1636-2. OCLC 1088722637. {{cite book}}: |last= has generic name (help)CS1 maint: multiple names: authors list (link)