समुचित श्रेणी

From Vigyanwiki
Revision as of 13:09, 27 March 2023 by alpha>Abhishek (Abhishek moved page सटीक श्रेणी to समुचित श्रेणी without leaving a redirect)

गणित में, एक सटीक श्रेणी डेनियल क्विलेन के कारण श्रेणी सिद्धांत की एक अवधारणा है, जिसे एबेलियन श्रेणी में छोटे समुचित अनुक्रमों के गुणों को समाहित करने के लिए रूपांकित किया गया है, बिना यह आवश्यक किए कि आकारिकी में वास्तव में कर्नेल और कोकर्नेल होते हैं, जो इस तरह की सामान्य परिभाषा के लिए आवश्यक अनुक्रम है।

परिभाषा

एक समुचित श्रेणी E एक योगात्मक श्रेणी है जिसमें लघु समुचित अनुक्रमों का एक श्रेणी (समुच्चय सिद्धांत) E होता है: तीरों से जुड़े वस्तुओं के तिगुने

एबेलियन श्रेणी में संक्षिप्त समुचित अनुक्रमों के गुणों से प्रेरित निम्नलिखित अभिगृहीत को संतुष्ट करना:

  • E समरूपता के तहत बंद है और इसमें विहित (विभाजित समुचित) अनुक्रम सम्मिलित हैं:
  • मान लीजिये कि E में एक अनुक्रम के दूसरे तीर के रूप में होता है (यह एक 'स्वीकार्य एपिमोर्फिज्म' है) और ई में कोई तीर है। उस समय उनका पुलबैक (श्रेणी सिद्धांत) उपस्थित है और इसका प्रक्षेपण एक स्वीकार्य एपिमोर्फिज्म भी है। दोहरी (श्रेणी सिद्धांत), यदि ई में अनुक्रम के पहले तीर के रूप में होता है (यह एक 'स्वीकार्य मोनोमोर्फिज्म' है) और कोई भी तीर है, तो उनका पुशआउट (श्रेणी सिद्धांत) उपस्थित है और इसका सहप्रक्षेपण एक स्वीकार्य मोनोमोर्फिज्म भी है। (हम कहते हैं कि स्वीकार्य एपिमोर्फिज्म पुलबैक के तहत स्थिर हैं, स्वीकार्य मोनोमोर्फिज्म पुशआउट के तहत स्थिर हैं।);
  • स्वीकार्य मोनोमोर्फिज्म उनके संबंधित स्वीकार्य एपिमोर्फिज्म के कर्नेल (श्रेणी सिद्धांत) हैं, और दोहरे रूप से दो स्वीकार्य मोनोमोर्फिम्स की संरचना स्वीकार्य है (इसी तरह स्वीकार्य एपिमोर्फिज्म);
  • मान लीजिये कि E में एक रेखित प्रारूप है जो E में कर्नेल को स्वीकार करता है, और मान लीजिए क्या कोई रेखित प्रारूप ऐसा है कि रचना एक स्वीकार्य एपिमोर्फिज्म है। तो ऐसा दो तरह से, अगर एक कोकरनेल और स्वीकार करता है इस प्रकार कि एक स्वीकार्य मोनोमोर्फिज्म है, तो ऐसा ही है।

स्वीकार्य मोनोमोर्फिम्स को सामान्यतः निरूपित किया जाता है और स्वीकार्य एपिमोर्फिज्म को निरूपित किया जाता है, ये अभिगृहीत न्यूनतम नहीं हैं; वास्तव में, अंतिम होने वाले को बर्नहार्ड केलर (1990) द्वारा बेमानी दिखाया गया है।

एबेलियन श्रेणियों के समुचित फ़ैक्टर के सदर्भ में समुचित श्रेणियों के बीच एक समुचित फ़ैक्टर के बारे में बात कर सकते हैं: एक समुचित फ़ैक्टर एक समुचित श्रेणी D से दूसरे E तक एक योजक फ़ंक्टर है जैसे कि यदि

D में समुचित है, तो

E में समुचित है। यदि D, E की उपश्रेणी है, तो यह एक समुचित उपश्रेणी है यदि समावेशन फ़ैक्टर पूरी तरह से सत्य और समुचित है।

प्रेरणा

एबेलियन श्रेणियों से समुचित श्रेणियां निम्नलिखित तरीके से आती हैं। मान लीजिए कि A एबेलियन है और E को कोई भी पूर्ण रूप से पूर्ण उपश्रेणी योगात्मक उपश्रेणी नहीं है जो इस अर्थ में विस्तार (बीजगणित) लेने के तहत बंद है कि एक समुचित अनुक्रम दिया गया है

A में, तो अगर E में हैं, इसलिए है हम वर्ग E को केवल 'E' में अनुक्रम के रूप में ले सकते हैं जो 'A' में समुचित हैं; वह है,

ईआईएफ में है

A में समुचित है। फिर उपरोक्त अर्थ में E एक समुचित श्रेणी है। हम अभिगृहीत की पुष्टि करते हैं:

  • E आइसोमोर्फिज्म के तहत बंद है और इसमें विभाजित समुचित अनुक्रम सम्मिलित हैं: ये परिभाषा के अनुसार सही हैं, क्योंकि एबेलियन श्रेणी में, किसी भी अनुक्रम आइसोमोर्फिक से समुचित एक भी अनुक्रम समुचित है, और चूंकि विभाजित अनुक्रम सदैव A में समुचित होते हैं .
  • स्वीकार्य एपिमोर्फिज्म (क्रमशः, स्वीकार्य मोनोमोर्फिज्म) पुलबैक (प्रतिक्रिया पुशआउट्स) के तहत स्थिर हैं: E में वस्तुओं का एक समुचित क्रम दिया गया है,
और एक रेखित प्रारूप साथ E में, कोई सत्यापित करता है कि निम्नलिखित अनुक्रम भी समुचित है; चूंकि E एक्सटेंशन के तहत स्थिर है, इसका मतलब यह है कि E में है:
  • प्रत्येक स्वीकार्य मोनोमोर्फिज्म इसके संबंधित स्वीकार्य एपिमोर्फिज्म का कर्नेल है, और इसके विपरीत: यह A में आकारिकी के रूप में सच है, और E एक पूर्ण उपश्रेणी है। ऐसा क्रम बिना किसी आकारिकी के पास वास्तव में कर्नेल (श्रेणी सिद्धांत) से सम्बंधित है, जो सामान्य परिभाषा के लिए आवश्यक है।
  • अगर ई में एक कर्नेल स्वीकार करता है और यदि इस प्रकार कि एक स्वीकार्य एपिमोर्फिज्म है, तो हैक्विलेन (1972) ऐसा ही प्रतीत होता है।

इसके विपरीत, यदि ई कोई समुचित श्रेणी है, तो हम ए को समुचित फ़ैक्टर की श्रेणी ले सकते हैं। लेम्मा, चूंकि होम समुचित छोड़ दिया गया है), एक्सटेंशन के तहत स्थिर है, और जिसमें अनुक्रम E में है अगर और केवल अगर यह A में समुचित है।

उदाहरण

  • कोई भी आबेली श्रेणी स्पष्ट रूप से प्रेरणा के निर्माण के अनुसार समुचित होती है।
  • एक कम सूक्ष्म उदाहरण श्रेणी Abtf है वक्र-मुक्त एबेलियन समूहों की, जो सभी एबेलियन समूहों की (एबेलियन) श्रेणी AB की एक पूर्ण उपश्रेणी है। यह एक्सटेंशन के तहत बंद है:
एबेलियन समूहों का एक छोटा समुचित क्रम है जिसमें तो वक्र मुक्त हैं निम्न तर्क द्वारा वक्र-मुक्त देखा जाता है: यदि एक वक्र तत्व है, तो उसकी छवि में शून्य है, क्योंकि वक्र रहित है। इस प्रकार मानचित्र के कर्नेल में स्थित है , जो है , लेकिन वह भी वक्र-मुक्त है, इसलिए , मोटिवेशन के निर्माण से, A.Btf एक समुचित श्रेणी है; इसमें समुचित अनुक्रमों के कुछ उदाहरण हैं:
जहां अंतिम उदाहरण डॉ कहलमज से प्रेरित है ( और सर्कल समूह पर बंद और समुचित अंतर रूप हैं); विशेष रूप से, यह ज्ञात है कि कोहोलॉजी समूह वास्तविक संख्याओं के लिए समरूप है। यह श्रेणी एबेलियन नहीं है।
  • निम्नलिखित उदाहरण कुछ अर्थों में उपरोक्त का पूरक है। अब वक्रt (और शून्य समूह भी) के साथ एबेलियन समूहों की श्रेणी हो। यह योगात्मक है और फिर से 'AB' की पूरी तरह से पूर्ण उपश्रेणी है। यह देखना और भी आसान है कि यह एक्सटेंशन के तहत स्थिर है: यदि
एक समुचित क्रम है जिसमें वक्र है, तो स्वाभाविक रूप से के सभी वक्र तत्व है,. इस प्रकार एक समुचित श्रेणी है।

संदर्भ

  • Keller, Bernhard (1990). "Chain complexes and stable categories". Manuscripta Mathematica. 67: 379–417. CiteSeerX 10.1.1.146.3555. doi:10.1007/BF02568439. S2CID 6945014. Appendix A. Exact Categories