ऑनलाइन विश्लेषणात्मक प्रक्रिया

From Vigyanwiki
Revision as of 23:12, 16 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Processing mode}} {{advert|date=February 2022}} {{buzzwords|date=February 2022}} ऑनलाइन विश्लेषणात्मक प्रसं...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Template:Buzzwords ऑनलाइन विश्लेषणात्मक प्रसंस्करण, या OLAP (/ˈlæp/), कम्प्यूटिंग में बहु-आयामी विश्लेषणात्मक (एमडीए) प्रश्नों का तेजी से उत्तर देने का एक तरीका है।[1] OLAP व्यावसायिक बुद्धिमत्ता की व्यापक श्रेणी का हिस्सा है, जिसमें संबंध का डेटाबेस, रिपोर्ट लेखन और डेटा खनन भी शामिल है।[2] OLAP के विशिष्ट अनुप्रयोगों में बिक्री, विपणन, व्यापार रिपोर्टिंग, व्यवसाय प्रक्रिया प्रबंधन (BPM) के लिए व्यावसायिक रिपोर्टिंग शामिल है।[3] बजट और पूर्वानुमान, वित्तीय रिपोर्टिंग और इसी तरह के क्षेत्र, नए अनुप्रयोगों के उभरने के साथ, जैसे कि कृषि[4] OLAP शब्द पारंपरिक डेटाबेस शब्द ऑनलाइन लेनदेन प्रसंस्करण (OLTP) के मामूली संशोधन के रूप में बनाया गया था।[5] OLAP उपकरण उपयोगकर्ताओं को बहुआयामी डेटा को कई दृष्टिकोणों से अंतःक्रियात्मक रूप से विश्लेषण करने में सक्षम बनाता है। OLAP में तीन बुनियादी विश्लेषणात्मक ऑपरेशन होते हैं: समेकन (रोल-अप), ड्रिल-डाउन और स्लाइसिंग और डाइसिंग।[6]: 402–403  समेकन में डेटा का एकत्रीकरण शामिल होता है जिसे संचित किया जा सकता है और एक या अधिक आयामों में गणना की जा सकती है। उदाहरण के लिए, बिक्री के रुझान का अनुमान लगाने के लिए सभी बिक्री कार्यालयों को बिक्री विभाग या बिक्री विभाग में रोल अप किया जाता है। इसके विपरीत, ड्रिल-डाउन एक ऐसी तकनीक है जो उपयोगकर्ताओं को विवरण के माध्यम से नेविगेट करने की अनुमति देती है। उदाहरण के लिए, उपयोगकर्ता अलग-अलग उत्पादों की बिक्री देख सकते हैं जो एक क्षेत्र की बिक्री बनाते हैं। स्लाइसिंग और डाइसिंग एक ऐसी सुविधा है जिससे उपयोगकर्ता OLAP क्यूब के डेटा के एक विशिष्ट सेट को निकाल (स्लाइसिंग) कर सकते हैं और विभिन्न दृष्टिकोणों से स्लाइस को देख (डाइसिंग) कर सकते हैं। इन दृष्टिकोणों को कभी-कभी आयाम कहा जाता है (जैसे विक्रेता द्वारा, या तिथि के अनुसार, या ग्राहक द्वारा, या उत्पाद द्वारा, या क्षेत्र द्वारा, आदि द्वारा समान बिक्री को देखना)।

OLAP के लिए कॉन्फ़िगर किए गए डेटाबेस एक बहुआयामी डेटा मॉडल का उपयोग करते हैं, जिससे जटिल विश्लेषणात्मक और तदर्थ प्रश्नों को तेजी से निष्पादन समय के साथ अनुमति मिलती है।[7] वे नेविगेशनल डेटाबेस, पदानुक्रमित डेटाबेस और रिलेशनल डेटाबेस के पहलुओं को उधार लेते हैं।

OLAP आमतौर पर OLTP (ऑनलाइन ट्रांजेक्शन प्रोसेसिंग) के विपरीत है, जो आमतौर पर बहुत कम जटिल प्रश्नों की विशेषता है, बड़ी मात्रा में, व्यापार खुफिया या रिपोर्टिंग के उद्देश्य के बजाय लेनदेन को संसाधित करने के लिए। जबकि OLAP सिस्टम ज्यादातर पढ़ने के लिए अनुकूलित होते हैं, OLTP को सभी प्रकार के प्रश्नों (रीड, इंसर्ट, अपडेट और डिलीट) को प्रोसेस करना होता है।

ओएलएपी सिस्टम का अवलोकन

किसी भी OLAP सिस्टम के मूल में एक OLAP क्यूब होता है (जिसे 'बहुआयामी क्यूब' या अतिविम भी कहा जाता है)। इसमें संख्यात्मक तथ्य होते हैं जिन्हें उपाय कहा जाता है जिन्हें आयाम (डेटा वेयरहाउस) द्वारा वर्गीकृत किया जाता है। उपायों को हाइपरक्यूब के चौराहों पर रखा गया है, जो एक सदिश स्थान के रूप में आयामों द्वारा फैला हुआ है। OLAP क्यूब में हेरफेर करने के लिए सामान्य इंटरफ़ेस एक मैट्रिक्स इंटरफ़ेस है, जैसे स्प्रेडशीट प्रोग्राम में पिवट तालिका, जो एकत्रीकरण या औसत जैसे आयामों के साथ प्रक्षेपण संचालन करता है।

क्यूब मेटाडेटा आमतौर पर एक रिलेशनल डेटाबेस में स्टार स्कीमा या स्नोफ्लेक स्कीमा या तालिकाओं के तथ्य नक्षत्र से बनाया जाता है। तथ्य तालिका में रिकॉर्ड से माप प्राप्त किए जाते हैं और आयाम तालिका से आयाम प्राप्त किए जाते हैं।

प्रत्येक उपाय के बारे में सोचा जा सकता है कि इसमें लेबल का एक सेट है, या इसके साथ जुड़े मेटा-डेटा हैं। आयाम वह है जो इन लेबलों का वर्णन करता है; यह उपाय के बारे में जानकारी प्रदान करता है।

एक सरल उदाहरण एक घन होगा जिसमें माप के रूप में स्टोर की बिक्री और आयाम के रूप में दिनांक/समय शामिल होता है। प्रत्येक बिक्री में एक दिनांक/समय लेबल होता है जो उस बिक्री के बारे में अधिक बताता है।

उदाहरण के लिए:

 बिक्री तथ्य तालिका
+-------------+----------+
| बिक्री_राशि | समय_आईडी |
+-------------+----------+ समय आयाम
| 2008.10| 1234 |----+ +---------+----+
+-------------+----------+ | | समय_आईडी | टाइमस्टैम्प |
                              | +---------+----+
                              +---->| 1234 | 20080902 12:35:43 |
                                    +---------+----+

बहुआयामी डेटाबेस

बहुआयामी संरचना को रिलेशनल मॉडल की भिन्नता के रूप में परिभाषित किया जाता है जो डेटा को व्यवस्थित करने और डेटा के बीच संबंधों को व्यक्त करने के लिए बहुआयामी संरचनाओं का उपयोग करता है।[6]: 177  संरचना को क्यूब्स में तोड़ा गया है और क्यूब्स प्रत्येक क्यूब की सीमा के भीतर डेटा को स्टोर और एक्सेस करने में सक्षम हैं। एक बहुआयामी संरचना के भीतर प्रत्येक सेल में इसके प्रत्येक आयाम के साथ तत्वों से संबंधित एकत्रित डेटा होता है।[6]: 178  यहां तक ​​​​कि जब डेटा में हेरफेर किया जाता है, तब भी इसका उपयोग करना आसान रहता है और एक कॉम्पैक्ट डेटाबेस प्रारूप का गठन जारी रहता है। डेटा अभी भी परस्पर जुड़ा हुआ है। ऑनलाइन एनालिटिकल प्रोसेसिंग (OLAP) एप्लिकेशन का उपयोग करने वाले विश्लेषणात्मक डेटाबेस के लिए बहुआयामी संरचना काफी लोकप्रिय है।[6] विश्लेषणात्मक डेटाबेस इन डेटाबेस का उपयोग जटिल व्यावसायिक प्रश्नों के उत्तर तेजी से देने की क्षमता के कारण करते हैं। डेटा को विभिन्न कोणों से देखा जा सकता है, जो अन्य मॉडलों के विपरीत समस्या का व्यापक परिप्रेक्ष्य देता है।[8]


एकत्रीकरण

यह दावा किया गया है कि जटिल प्रश्नों के लिए OLAP क्यूब्स OLTP रिलेशनल डेटा पर समान क्वेरी के लिए आवश्यक समय के लगभग 0.1% में उत्तर दे सकते हैं।[9][10] OLAP में सबसे महत्वपूर्ण तंत्र जो इस तरह के प्रदर्शन को प्राप्त करने की अनुमति देता है, वह एकत्रीकरण का उपयोग है। कुल समारोह (या एकत्रीकरण फ़ंक्शन) का उपयोग करके, विशिष्ट आयामों पर ग्रैन्युलैरिटी को बदलकर और इन आयामों के साथ डेटा एकत्र करके तथ्य तालिका से एकत्रीकरण बनाया जाता है। संभावित एकत्रीकरण की संख्या आयाम ग्रैन्युलैरिटी के प्रत्येक संभावित संयोजन द्वारा निर्धारित की जाती है।

सभी संभावित एकत्रीकरण और आधार डेटा के संयोजन में प्रत्येक क्वेरी के उत्तर होते हैं जिनका उत्तर डेटा से दिया जा सकता है।[11] क्योंकि आम तौर पर कई एकत्रीकरण होते हैं जिनकी गणना की जा सकती है, अक्सर केवल एक पूर्व निर्धारित संख्या की ही पूरी तरह से गणना की जाती है; शेष मांग पर हल किए जाते हैं। किस एकत्रीकरण (विचारों) की गणना करने का निर्णय लेने की समस्या को दृश्य चयन समस्या के रूप में जाना जाता है। दृश्य चयन को एकत्रीकरण के चयनित सेट के कुल आकार, आधार डेटा में परिवर्तन से उन्हें अपडेट करने का समय, या दोनों द्वारा विवश किया जा सकता है। दृश्य चयन का उद्देश्य आम तौर पर OLAP प्रश्नों का उत्तर देने के लिए औसत समय को कम करना है, हालांकि कुछ अध्ययन अद्यतन समय को भी कम करते हैं। दृश्य चयन एनपी-पूर्ण है। समस्या के कई दृष्टिकोणों का पता लगाया गया है, जिसमें लालची एल्गोरिदम, यादृच्छिक खोज, आनुवंशिक एल्गोरिदम और A* खोज एल्गोरिदम शामिल हैं।

कुछ एकत्रीकरण कार्यों की गणना पूरे OLAP क्यूब के लिए प्रत्येक सेल के लिए मूल्यों की पूर्व-गणना करके की जा सकती है, और फिर इन समुच्चय को एकत्र करके कोशिकाओं के रोल-अप के लिए एकत्रीकरण की गणना करके, उन्हें कुशलता से गणना करने के लिए बहुआयामी समस्या के लिए एक विभाजन और जीत एल्गोरिथ्म लागू किया जा सकता है।[12] उदाहरण के लिए, रोल-अप का कुल योग प्रत्येक सेल में सब-सम का योग है। ऐसे कार्य जिन्हें इस तरह से विघटित किया जा सकता है, उन्हें विघटनीय एकत्रीकरण कार्य कहा जाता है, और इसमें शामिल हैं COUNT, MAX, MIN, और SUM, जिसकी गणना प्रत्येक सेल के लिए की जा सकती है और फिर सीधे एकत्रित की जा सकती है; इन्हें स्व-विघटनीय एकत्रीकरण कार्यों के रूप में जाना जाता है।[13] अन्य मामलों में कुल फ़ंक्शन की गणना कोशिकाओं के लिए सहायक संख्याओं की गणना करके, इन सहायक संख्याओं को एकत्र करके और अंत में अंत में समग्र संख्या की गणना करके की जा सकती है; उदाहरणों में शामिल AVERAGE (ट्रैकिंग राशि और गिनती, अंत में विभाजित) और RANGE (अधिकतम और न्यूनतम ट्रैकिंग, अंत में घटाना)। अन्य मामलों में पूरे सेट का एक बार में विश्लेषण किए बिना समग्र कार्य की गणना नहीं की जा सकती है, हालांकि कुछ मामलों में सन्निकटन की गणना की जा सकती है; उदाहरणों में शामिल DISTINCT COUNT, MEDIAN, और MODE; उदाहरण के लिए, किसी समुच्चय की माध्यिका उपसमुच्चयों की माध्यिकाओं की माध्यिका नहीं है। इन बाद वाले को OLAP में कुशलता से लागू करना मुश्किल है, क्योंकि उन्हें आधार डेटा पर कुल फ़ंक्शन की गणना करने की आवश्यकता होती है, या तो उन्हें ऑनलाइन (धीमा) कंप्यूटिंग या संभावित रोलआउट (बड़ी जगह) के लिए प्रीकंप्यूटिंग करना पड़ता है।

प्रकार

OLAP सिस्टम को पारंपरिक रूप से निम्नलिखित टैक्सोनॉमी का उपयोग करके वर्गीकृत किया गया है।[14]


बहुआयामी OLAP (MOLAP)

MOLAP (बहु-आयामी ऑनलाइन विश्लेषणात्मक प्रसंस्करण) OLAP का क्लासिक रूप है और इसे कभी-कभी केवल OLAP के रूप में संदर्भित किया जाता है। MOLAP इस डेटा को एक संबंधपरक डेटाबेस के बजाय एक अनुकूलित बहु-आयामी सरणी संग्रहण में संग्रहीत करता है।

कुछ MOLAP उपकरणों को व्युत्पन्न डेटा की पूर्व-गणना और भंडारण की आवश्यकता होती है, जैसे कि समेकन - प्रसंस्करण के रूप में जाना जाने वाला ऑपरेशन। ऐसे MOLAP उपकरण आम तौर पर डेटा क्यूब के रूप में संदर्भित पूर्व-परिकलित डेटा सेट का उपयोग करते हैं। डेटा क्यूब में प्रश्नों की दी गई श्रेणी के सभी संभावित उत्तर होते हैं। नतीजतन, उनके पास प्रश्नों के लिए बहुत तेज़ प्रतिक्रिया होती है। दूसरी ओर, पूर्व-गणना की डिग्री के आधार पर अद्यतन करने में लंबा समय लग सकता है। पूर्व-गणना से वह भी हो सकता है जिसे डेटा विस्फोट के रूप में जाना जाता है।

अन्य MOLAP उपकरण, विशेष रूप से वे जो कार्यात्मक डेटाबेस मॉडल को लागू करते हैं, व्युत्पन्न डेटा की पूर्व-गणना नहीं करते हैं, लेकिन पहले से अनुरोध किए गए और कैश में संग्रहीत किए गए के अलावा अन्य सभी गणना मांग पर करते हैं।

मोलाप के लाभ

  • अनुकूलित भंडारण, बहुआयामी अनुक्रमण और कैशिंग के कारण तेज़ क्वेरी प्रदर्शन।
  • संपीड़न तकनीकों के कारण रिलेशनल डेटाबेस में संग्रहीत डेटा की तुलना में डेटा का छोटा ऑन-डिस्क आकार।
  • डेटा के उच्च स्तरीय समुच्चय की स्वचालित गणना।
  • यह कम आयाम वाले डेटा सेट के लिए बहुत कॉम्पैक्ट है।
  • ऐरे मॉडल प्राकृतिक अनुक्रमण प्रदान करते हैं।
  • एकत्रित डेटा की पूर्व-संरचना के माध्यम से प्रभावी डेटा निष्कर्षण प्राप्त किया गया।

मोलाप के नुकसान

  • कुछ MOLAP सिस्टम में प्रोसेसिंग चरण (डेटा लोड) काफी लंबा हो सकता है, विशेष रूप से बड़े डेटा वॉल्यूम पर। आमतौर पर केवल वृद्धिशील प्रसंस्करण करके इसका उपचार किया जाता है, यानी पूरे डेटा सेट को पुन: संसाधित करने के बजाय केवल उस डेटा को संसाधित करना जो बदल गया है (आमतौर पर नया डेटा)।
  • कुछ MOLAP कार्यप्रणालियाँ डेटा अतिरेक का परिचय देती हैं।

उत्पाद

मोलाप का उपयोग करने वाले वाणिज्यिक उत्पादों के उदाहरण कॉग्नोस पावरप्ले, ओरेकल ओएलएपी, सूक्ष्म रणनीति, Microsoft विश्लेषण सेवाएँ, Essbase, एप्लिक्स, जेडॉक्स और iCube हैं।

संबंधपरक OLAP (ROLAP)

ROLAP सीधे संबंधपरक डेटाबेस के साथ काम करता है और इसके लिए पूर्व-गणना की आवश्यकता नहीं होती है। आधार डेटा और आयाम तालिकाओं को संबंधपरक तालिकाओं के रूप में संग्रहीत किया जाता है और एकत्रित जानकारी रखने के लिए नई तालिकाएँ बनाई जाती हैं। यह एक विशेष स्कीमा डिजाइन पर निर्भर करता है। यह कार्यप्रणाली पारंपरिक OLAP की स्लाइसिंग और डाइसिंग कार्यक्षमता का आभास देने के लिए रिलेशनल डेटाबेस में संग्रहीत डेटा में हेरफेर करने पर निर्भर करती है। संक्षेप में, स्लाइसिंग और डाइसिंग की प्रत्येक क्रिया SQL स्टेटमेंट में WHERE क्लॉज जोड़ने के बराबर है। ROLAP उपकरण पूर्व-परिकलित डेटा क्यूब्स का उपयोग नहीं करते हैं, बल्कि प्रश्न का उत्तर देने के लिए आवश्यक डेटा को वापस लाने के लिए क्वेरी को मानक रिलेशनल डेटाबेस और इसकी तालिकाओं में रखते हैं। ROLAP टूल में कोई भी प्रश्न पूछने की क्षमता होती है क्योंकि कार्यप्रणाली क्यूब की सामग्री तक सीमित नहीं है। ROLAP में डेटाबेस में विवरण के निम्नतम स्तर तक ड्रिल-डाउन करने की क्षमता भी है।

जबकि ROLAP एक रिलेशनल डेटाबेस स्रोत का उपयोग करता है, आम तौर पर डेटाबेस को सावधानीपूर्वक ROLAP उपयोग के लिए डिज़ाइन किया जाना चाहिए। एक डेटाबेस जो OLTP के लिए डिज़ाइन किया गया था, वह ROLAP डेटाबेस के रूप में अच्छी तरह से काम नहीं करेगा। इसलिए, ROLAP में अभी भी डेटा की एक अतिरिक्त प्रति बनाना शामिल है। हालाँकि, चूंकि यह एक डेटाबेस है, इसलिए डेटाबेस को भरने के लिए विभिन्न तकनीकों का उपयोग किया जा सकता है।

रॉलप के फायदे

  • ROLAP को बड़े डेटा वॉल्यूम को संभालने में अधिक स्केलेबल माना जाता है, विशेष रूप से आयाम वाले मॉडल (डेटा वेयरहाउस) बहुत उच्च प्रमुखता (यानी, लाखों सदस्य) के साथ।
  • विभिन्न प्रकार के डेटा लोडिंग टूल उपलब्ध हैं, और विशेष डेटा मॉडल के लिए एक्सट्रैक्ट, ट्रांसफ़ॉर्म, लोड (ETL) कोड को फ़ाइन-ट्यून करने की क्षमता के साथ, लोड समय आम तौर पर स्वचालित #Multiआयामी_OLAP_.28MOLAP.29 लोड की तुलना में बहुत कम होता है .
  • डेटा को एक मानक रिलेशनल डेटाबेस में संग्रहीत किया जाता है और इसे किसी भी SQL रिपोर्टिंग टूल द्वारा एक्सेस किया जा सकता है (टूल को OLAP टूल नहीं होना चाहिए)।
  • गैर-एकत्रीकरण योग्य तथ्यों (जैसे, पाठ्य विवरण) को संभालने में ROLAP उपकरण बेहतर हैं। #बहुआयामी_OLAP_.28MOLAP.29 उपकरण इन तत्वों की क्वेरी करते समय धीमे प्रदर्शन से पीड़ित होते हैं।
  • मल्टी-डायमेंशनल मॉडल से डेटा स्टोरेज को डिकूप्लिंग (इलेक्ट्रॉनिक्स) करके, डेटा को सफलतापूर्वक मॉडल करना संभव है जो अन्यथा सख्त डायमेंशनल मॉडल में फिट नहीं होगा।
  • ROLAP दृष्टिकोण डेटाबेस प्राधिकरण नियंत्रणों का लाभ उठा सकता है जैसे कि पंक्ति-स्तरीय सुरक्षा, जिससे क्वेरी परिणाम लागू किए गए पूर्व निर्धारित मानदंडों के आधार पर फ़िल्टर किए जाते हैं, उदाहरण के लिए, किसी दिए गए उपयोगकर्ता या उपयोगकर्ताओं के समूह (SQL WHERE क्लॉज) के लिए।

ROLAP के नुकसान

  • उद्योग में इस बात पर सहमति है कि ROLAP टूल का प्रदर्शन MOLAP टूल की तुलना में धीमा है। हालाँकि, ROLAP प्रदर्शन के बारे में नीचे चर्चा देखें।
  • एग्रीगेट टेबल की लोडिंग को कस्टम एक्सट्रैक्ट, ट्रांसफॉर्म, लोड कोड द्वारा प्रबंधित किया जाना चाहिए। ROLAP उपकरण इस कार्य में सहायता नहीं करते हैं। इसका अर्थ है अतिरिक्त विकास समय और समर्थन के लिए अधिक कोड।
  • जब समग्र तालिकाएँ बनाने का चरण छोड़ दिया जाता है, तो क्वेरी प्रदर्शन तब प्रभावित होता है क्योंकि बड़ी विस्तृत तालिकाओं को क्वेरी करना चाहिए। अतिरिक्त समग्र तालिकाएँ जोड़कर इसका आंशिक रूप से उपचार किया जा सकता है, हालाँकि आयामों/विशेषताओं के सभी संयोजनों के लिए समग्र तालिकाएँ बनाना अभी भी व्यावहारिक नहीं है।
  • ROLAP क्वेरी और कैशिंग के लिए सामान्य उद्देश्य डेटाबेस पर निर्भर करता है, और इसलिए MOLAP टूल द्वारा नियोजित कई विशेष तकनीकें उपलब्ध नहीं हैं (जैसे विशेष श्रेणीबद्ध अनुक्रमण)। हालाँकि, आधुनिक ROLAP टूल SQL भाषा में नवीनतम सुधारों का लाभ उठाते हैं जैसे CUBE और ROLLUP ऑपरेटर्स, DB2 क्यूब व्यूज़, साथ ही अन्य SQL OLAP एक्सटेंशन। ये SQL सुधार MOLAP टूल के लाभों को कम कर सकते हैं।
  • चूँकि ROLAP उपकरण सभी संगणनाओं के लिए SQL पर निर्भर करते हैं, वे उपयुक्त नहीं होते हैं जब मॉडल गणनाओं पर भारी होता है जो SQL में अच्छी तरह से अनुवाद नहीं करता है। ऐसे मॉडलों के उदाहरणों में बजट, आवंटन, वित्तीय रिपोर्टिंग और अन्य परिदृश्य शामिल हैं।

ROLAP का प्रदर्शन

OLAP उद्योग में ROLAP को आमतौर पर बड़े डेटा वॉल्यूम के लिए स्केल करने में सक्षम माना जाता है, लेकिन #बहुआयामी_OLAP_.28MOLAP.29 के विपरीत धीमी क्वेरी प्रदर्शन से पीड़ित है। OLAP सर्वेक्षण, जो सभी प्रमुख OLAP उत्पादों का सबसे बड़ा स्वतंत्र सर्वेक्षण है, जो 6 वर्षों (2001 से 2006) के लिए आयोजित किया जा रहा है, ने लगातार पाया है कि ROLAP का उपयोग करने वाली कंपनियां प्रदर्शन की तुलना में धीमी रिपोर्ट करती हैं जो डेटा की मात्रा को ध्यान में रखते हुए भी MOLAP का उपयोग कर रहे हैं।

हालांकि, जैसा कि किसी भी सर्वेक्षण के साथ होता है, ऐसे कई सूक्ष्म मुद्दे हैं जिन्हें परिणामों की व्याख्या करते समय ध्यान में रखा जाना चाहिए।

  • सर्वेक्षण से पता चलता है कि ROLAP टूल के पास प्रत्येक कंपनी के #बहुआयामी_OLAP_.28MOLAP.29 टूल की तुलना में 7 गुना अधिक उपयोगकर्ता हैं। अधिक उपयोगकर्ताओं वाले सिस्टम को चरम उपयोग के समय अधिक प्रदर्शन समस्याओं का सामना करना पड़ेगा।
  • मॉडल की जटिलता के बारे में भी एक सवाल है, जिसे आयामों की संख्या और गणनाओं की समृद्धि दोनों में मापा जाता है। विश्लेषण किए जा रहे डेटा में इन विविधताओं को नियंत्रित करने के लिए सर्वेक्षण एक अच्छा तरीका प्रदान नहीं करता है।

लचीलेपन का नकारात्मक पक्ष

कुछ कंपनियां ROLAP का चयन करती हैं क्योंकि वे मौजूदा संबंधपरक डेटाबेस तालिकाओं का पुन: उपयोग करने का इरादा रखती हैं - इन तालिकाओं को अक्सर OLAP उपयोग के लिए इष्टतम रूप से डिज़ाइन नहीं किया जाएगा। ROLAP टूल का बेहतर लचीलापन इसे काम करने के लिए इष्टतम डिज़ाइन से कम अनुमति देता है, लेकिन प्रदर्शन प्रभावित होता है। इसके विपरीत #बहुआयामी_OLAP_.28MOLAP.29 उपकरण डेटा को एक इष्टतम OLAP डिज़ाइन में पुनः लोड करने के लिए बाध्य करेंगे।

हाइब्रिड ओलाप (होलाप)

अतिरिक्त एक्सट्रेक्ट, ट्रांसफॉर्म, लोड लागत और धीमी क्वेरी प्रदर्शन के बीच अवांछनीय व्यापार-बंद ने सुनिश्चित किया है कि अधिकांश वाणिज्यिक OLAP उपकरण अब एक हाइब्रिड OLAP (HOLAP) दृष्टिकोण का उपयोग करते हैं, जो मॉडल डिज़ाइनर को यह तय करने की अनुमति देता है कि डेटा का कौन सा भाग संग्रहीत किया जाएगा। #बहुआयामी_OLAP_.28MOLAP.29 और ROLAP में कौन सा भाग।

हाइब्रिड OLAP का गठन करने के लिए पूरे उद्योग में कोई स्पष्ट समझौता नहीं है, सिवाय इसके कि एक डेटाबेस संबंधपरक और विशेष भंडारण के बीच डेटा को विभाजित करेगा।[15] उदाहरण के लिए, कुछ विक्रेताओं के लिए, एक HOLAP डेटाबेस बड़ी मात्रा में विस्तृत डेटा रखने के लिए रिलेशनल टेबल का उपयोग करेगा, और अधिक-एकत्रित या कम-विस्तृत डेटा की छोटी मात्रा के कम से कम कुछ पहलुओं के लिए विशेष भंडारण का उपयोग करेगा। HOLAP दोनों दृष्टिकोणों की क्षमताओं को जोड़कर #बहुआयामी_OLAP_.28MOLAP.29 और #Relational_OLAP_.28ROLAP.29 की कमियों को संबोधित करता है। HOLAP उपकरण पूर्व-परिकलित क्यूब्स और संबंधपरक डेटा स्रोतों दोनों का उपयोग कर सकते हैं।

कार्यक्षेत्र विभाजन

इस मोड में HOLAP एकत्रीकरण को #बहुआयामी_OLAP_.28MOLAP.29 में तेजी से क्वेरी प्रदर्शन के लिए संग्रहीत करता है, और घन प्रसंस्करण के समय को अनुकूलित करने के लिए #Relational_OLAP_.28ROLAP.29 में विस्तृत डेटा।

क्षैतिज विभाजन

इस मोड में HOLAP डेटा के कुछ हिस्से को संग्रहीत करता है, आमतौर पर नवीनतम डेटा (अर्थात समय आयाम द्वारा विभाजित) को #Multiआयामी_OLAP_.28MOLAP.29 में तेजी से क्वेरी प्रदर्शन के लिए, और पुराने डेटा को #Relational_OLAP_.28ROLAP.29 में संग्रहीत करता है। इसके अलावा, हम कुछ डाइसों को #बहुआयामी_OLAP_.28MOLAP.29 में और अन्य को #Relational_OLAP_.28ROLAP.29 में स्टोर कर सकते हैं, इस तथ्य का लाभ उठाते हुए कि एक बड़े घनाभ में घने और विरल उपक्षेत्र होंगे।[16]


उत्पाद

HOLAP स्टोरेज प्रदान करने वाला पहला उत्पाद Holos था, लेकिन यह तकनीक अन्य वाणिज्यिक उत्पादों जैसे Microsoft विश्लेषण सेवाओं, Oracle OLAP, MicroStrategy और SAP AG BI Accelerator में भी उपलब्ध हो गई। हाइब्रिड OLAP दृष्टिकोण ROLAP और MOLAP तकनीक को जोड़ती है, जो ROLAP की अधिक मापनीयता और MOLAP की तेज़ संगणना से लाभान्वित होती है। उदाहरण के लिए, एक HOLAP सर्वर बड़ी मात्रा में विस्तृत डेटा को रिलेशनल डेटाबेस में स्टोर कर सकता है, जबकि एग्रीगेशन को एक अलग MOLAP स्टोर में रखा जाता है। Microsoft SQL Server 7.0 OLAP सेवाएँ हाइब्रिड OLAP सर्वर का समर्थन करती हैं

तुलना

प्रत्येक प्रकार के कुछ लाभ हैं, हालांकि प्रदाताओं के बीच लाभों की बारीकियों के बारे में असहमति है।

  • कुछ MOLAP कार्यान्वयन डेटाबेस विस्फोट के लिए प्रवण होते हैं, एक ऐसी घटना जिसके कारण MOLAP डेटाबेस द्वारा बड़ी मात्रा में भंडारण स्थान का उपयोग किया जाता है जब कुछ सामान्य स्थितियाँ पूरी होती हैं: उच्च संख्या में आयाम, पूर्व-परिकलित परिणाम और विरल बहुआयामी डेटा।
  • MOLAP आमतौर पर विशिष्ट अनुक्रमण और भंडारण अनुकूलन के कारण बेहतर प्रदर्शन प्रदान करता है। MOLAP को ROLAP की तुलना में कम संग्रहण स्थान की आवश्यकता होती है क्योंकि विशिष्ट संग्रहण में आमतौर पर डेटा संपीड़न तकनीकें शामिल होती हैं।[15]* ROLAP आमतौर पर अधिक मापनीय है।[15]हालांकि, बड़ी मात्रा में पूर्व-प्रसंस्करण कुशलता से लागू करना मुश्किल है, इसलिए इसे अक्सर छोड़ दिया जाता है। ROLAP क्वेरी प्रदर्शन इसलिए जबरदस्त रूप से प्रभावित हो सकता है।
  • चूँकि ROLAP गणना करने के लिए डेटाबेस पर अधिक निर्भर करता है, इसलिए इसके द्वारा उपयोग किए जा सकने वाले विशेष कार्यों में इसकी अधिक सीमाएँ हैं।
  • HOLAP ROLAP और MOLAP के सर्वोत्तम मिश्रण का प्रयास करता है। यह आम तौर पर तेजी से प्री-प्रोसेस कर सकता है, अच्छी तरह से स्केल कर सकता है और अच्छे फंक्शन सपोर्ट की पेशकश कर सकता है।

अन्य प्रकार

निम्नलिखित परिवर्णी शब्द भी कभी-कभी उपयोग किए जाते हैं, हालांकि वे ऊपर के रूप में व्यापक नहीं हैं:

  • WOLAP - वेब आधारित OLAP
  • DOLAP - डेस्कटॉप कंप्यूटर OLAP
  • Rtolap - रीयल-टाइम OLAP
  • GOLAP - ग्राफ़ OLAP[17][18]
  • CaseOLAP - संदर्भ-अवगत सिमेंटिक OLAP,[19] जैव चिकित्सा अनुप्रयोगों के लिए विकसित।[20] CaseOLAP प्लेटफ़ॉर्म में डेटा प्रीप्रोसेसिंग (जैसे, डाउनलोड करना, निष्कर्षण और टेक्स्ट दस्तावेज़ों को पार्स करना), इलास्टिक्स खोज के साथ अनुक्रमण और खोज करना, टेक्स्ट-क्यूब नामक एक कार्यात्मक दस्तावेज़ संरचना बनाना शामिल है,[21][22][23][24][25] और मुख्य CaseOLAP एल्गोरिथ्म का उपयोग करके उपयोगकर्ता-परिभाषित वाक्यांश-श्रेणी संबंधों को परिमाणित करना।

एपीआई और क्वेरी भाषाएं

संबंधपरक डेटाबेस के विपरीत, जिसमें मानक क्वेरी भाषा के रूप में SQL था, और ODBC, JDBC और OLEDB जैसे व्यापक अप्लिकेशन प्रोग्रामिंग अंतरफलक थे, OLAP दुनिया में लंबे समय तक ऐसा कोई एकीकरण नहीं था। Microsoft से OLAP विनिर्देशन के लिए पहला वास्तविक मानक API OLE DB था जो 1997 में सामने आया और बहुआयामी अभिव्यक्ति क्वेरी भाषा पेश की। कई OLAP वेंडर – सर्वर और क्लाइंट दोनों – ने इसे अपनाया। 2001 में Microsoft और Hyperion Solutions Corporation ने विश्लेषण विनिर्देश के लिए XML की घोषणा की, जिसे अधिकांश OLAP विक्रेताओं द्वारा समर्थन दिया गया था। चूँकि इसने MDX को क्वेरी भाषा के रूप में भी इस्तेमाल किया, MDX वास्तविक मानक बन गया।[26] सितंबर-2011 से Microsoft .NET से Microsoft विश्लेषण सेवाओं OLAP क्यूब्स को क्वेरी करने के लिए LINQ का उपयोग किया जा सकता है।[27]


उत्पाद

इतिहास

OLAP प्रश्नों का प्रदर्शन करने वाला पहला उत्पाद एक्सप्रेस था, जिसे 1970 में जारी किया गया था (और 1995 में Oracle Corporation द्वारा सूचना संसाधनों से अधिग्रहित किया गया था)।[28] हालांकि, यह शब्द 1993 तक प्रकट नहीं हुआ था जब इसे एडगर एफ. कॉड द्वारा गढ़ा गया था, जिसे संबंधपरक डेटाबेस के पिता के रूप में वर्णित किया गया है। कॉड का पेपर[1]मार्केटिंग कूप के रूप में एक संक्षिप्त परामर्श कार्य के परिणामस्वरूप कोडड ने पूर्व आर्बर सॉफ्टवेयर (बाद में हाइपरियन सॉल्यूशंस, और 2007 में ओरेकल द्वारा अधिग्रहित) के लिए काम किया। कंपनी ने एक साल पहले अपना OLAP उत्पाद Essbase जारी किया था। नतीजतन, कॉड के ऑनलाइन विश्लेषणात्मक प्रसंस्करण के बारह कानून Essbase के संदर्भ में स्पष्ट थे। इसके बाद कुछ विवाद हुआ और जब कंप्यूटरवर्ल्ड को पता चला कि कॉड को आर्बर द्वारा भुगतान किया गया था, तो उसने लेख को वापस ले लिया। OLAP बाजार ने 1990 के दशक के अंत में दर्जनों वाणिज्यिक उत्पादों के बाजार में आने के साथ मजबूत वृद्धि का अनुभव किया। 1998 में, Microsoft ने अपना पहला OLAP सर्वर जारी किया – Microsoft विश्लेषण सेवाएँ, जिसने OLAP तकनीक को व्यापक रूप से अपनाया और इसे मुख्यधारा में लाया।

उत्पाद तुलना


OLAP ग्राहक

OLAP क्लाइंट में एक्सेल, वेब एप्लिकेशन, SQL, डैशबोर्ड टूल आदि जैसे कई स्प्रेडशीट प्रोग्राम शामिल हैं। कई क्लाइंट इंटरएक्टिव डेटा एक्सप्लोरेशन का समर्थन करते हैं जहां उपयोगकर्ता रुचि के आयामों और उपायों का चयन करते हैं। कुछ आयामों का उपयोग फिल्टर के रूप में किया जाता है (डेटा को स्लाइस करने और डाइस करने के लिए) जबकि अन्य को पिवट टेबल या पिवट चार्ट के अक्ष के रूप में चुना जाता है। उपयोगकर्ता प्रदर्शित दृश्य में एकत्रीकरण स्तर (ड्रिलिंग-डाउन या रोलिंग-अप के लिए) भी भिन्न हो सकते हैं। ग्राहक विभिन्न प्रकार के ग्राफिकल विजेट्स जैसे स्लाइडर्स, भौगोलिक मानचित्र, हीट मैप्स और बहुत कुछ प्रदान कर सकते हैं जिन्हें डैशबोर्ड के रूप में समूहीकृत और समन्वित किया जा सकता है। OLAP सर्वर टेबल की तुलना के विज़ुअलाइज़ेशन कॉलम में ग्राहकों की एक विस्तृत सूची दिखाई देती है।

बाजार संरचना

नीचे 2006 में शीर्ष OLAP विक्रेताओं की सूची दी गई है, जिसमें आंकड़े लाखों अमेरिकी डॉलर में हैं।[29]

Vendor Global Revenue Consolidated company
Microsoft Corporation 1,806 Microsoft
Hyperion Solutions Corporation 1,077 Oracle
Cognos 735 IBM
Business Objects 416 SAP
MicroStrategy 416 MicroStrategy
SAP AG 330 SAP
Cartesis (SAP) 210 SAP
Applix 205 IBM
Infor 199 Infor
Oracle Corporation 159 Oracle
Others 152 Others
Total 5,700


ओपन-सोर्स

  • अपाचे पिनोट का उपयोग लिंक्डइन, सिस्को, उबेर, स्लैक, स्ट्राइप, डोरडैश, टारगेट, वॉलमार्ट, अमेज़ॅन और माइक्रोसॉफ्ट में कम विलंबता के साथ स्केलेबल रियल टाइम एनालिटिक्स देने के लिए किया जाता है।[30] यह ऑफ़लाइन डेटा स्रोतों (जैसे हडूप और फ्लैट फ़ाइलें) के साथ-साथ ऑनलाइन स्रोतों (जैसे काफ्का) से डेटा ग्रहण कर सकता है। पिनोट को क्षैतिज रूप से स्केल करने के लिए डिज़ाइन किया गया है।
  • मोंड्रियन ओलाप सर्वर एक खुला स्रोत सॉफ्टवेयर है। ओपन-सोर्स OLAP सर्वर जावा (प्रोग्रामिंग भाषा) में लिखा गया है। यह बहुआयामी अभिव्यक्ति क्वेरी भाषा, विश्लेषण के लिए XML और olap4j इंटरफ़ेस विनिर्देशों का समर्थन करता है।
  • Apache Druid OLAP प्रश्नों के लिए एक लोकप्रिय ओपन-सोर्स वितरित डेटा स्टोर है जिसका उपयोग विभिन्न संगठनों द्वारा बड़े पैमाने पर उत्पादन में किया जाता है।
  • Apache Kylin मूल रूप से eBay द्वारा विकसित OLAP प्रश्नों के लिए एक वितरित डेटा स्टोर है।
  • क्यूब्स (ओएलएपी सर्वर) एक और हल्का ओपन-सोर्स सॉफ्टवेयर है। अंतर्निहित रोलैप के साथ पायथन (प्रोग्रामिंग भाषा) में ओएलएपी कार्यक्षमता का ओपन-सोर्स टूलकिट कार्यान्वयन।
  • क्लिकहाउस तेजी से प्रसंस्करण और प्रतिक्रिया समय पर ध्यान केंद्रित करने वाला एक बिल्कुल नया कॉलम उन्मुख डीबीएमएस है।
  • डकडब[31] एक इन-प्रोसेस SQL ​​OLAP है[32] डेटाबेस प्रबंधन प्रणाली।

यह भी देखें

  • ओलाप सर्वरों की तुलना
  • कार्यात्मक डेटाबेस मॉडल

ग्रन्थसूची

  • Daniel Lemire (December 2007). "Data Warehousing and OLAP-A Research-Oriented ग्रन्थसूची".
  • Erik Thomsen. (1997). OLAP Solutions: Building Multidimensional Information Systems, 2nd Edition. John Wiley & Sons. ISBN 978-0-471-14931-6.


संदर्भ

उद्धरण

  1. 1.0 1.1 Codd E.F.; Codd S.B. & Salley C.T. (1993). "Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate" (PDF). Codd & Date, Inc. Retrieved 2008-03-05.[permanent dead link]
  2. Deepak Pareek (2007). Business Intelligence for Telecommunications. CRC Press. pp. 294 pp. ISBN 978-0-8493-8792-0. Retrieved 2008-03-18.
  3. Apostolos Benisis (2010). Business Process Management:A Data Cube To Analyze Business Process Simulation Data For Decision Making. VDM Verlag Dr. Müller e.K. pp. 204 pp. ISBN 978-3-639-22216-6.
  4. Abdullah, Ahsan (November 2009). "Analysis of mealybug incidence on the cotton crop using ADSS-OLAP (Online Analytical Processing) tool". Computers and Electronics in Agriculture. 69 (1): 59–72. doi:10.1016/j.compag.2009.07.003.
  5. "OLAP Council White Paper" (PDF). OLAP Council. 1997. Retrieved 2008-03-18.
  6. 6.0 6.1 6.2 6.3 O'Brien, J. A., & Marakas, G. M. (2009). Management information systems (9th ed.). Boston, MA: McGraw-Hill/Irwin.
  7. Hari Mailvaganam (2007). "Introduction to OLAP – Slice, Dice and Drill!". Data Warehousing Review. Retrieved 2008-03-18.
  8. Williams, C., Garza, V.R., Tucker, S, Marcus, A.M. (1994, January 24). Multidimensional models boost viewing options. InfoWorld, 16(4)
  9. MicroStrategy, Incorporated (1995). "The Case for Relational OLAP" (PDF). Retrieved 2008-03-20.
  10. Surajit Chaudhuri & Umeshwar Dayal (1997). "An overview of data warehousing and OLAP technology". SIGMOD Rec. 26 (1): 65. CiteSeerX 10.1.1.211.7178. doi:10.1145/248603.248616. S2CID 8125630.
  11. Gray, Jim; Chaudhuri, Surajit; Layman, Andrew; Reichart, Don; Venkatrao, Murali; Pellow, Frank; Pirahesh, Hamid (1997). "Data Cube: {A} Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals". J. Data Mining and Knowledge Discovery. 1 (1): 29–53. arXiv:cs/0701155. doi:10.1023/A:1009726021843. S2CID 12502175. Retrieved 2008-03-20.
  12. Zhang 2017, p. 1.
  13. Jesus, Baquero & Almeida 2011, 2.1 Decomposable functions, pp. 3–4.
  14. Nigel Pendse (2006-06-27). "OLAP architectures". OLAP Report. Archived from the original on January 24, 2008. Retrieved 2008-03-17.
  15. 15.0 15.1 15.2 Bach Pedersen, Torben; S. Jensen, Christian (December 2001). "बहुआयामी डेटाबेस प्रौद्योगिकी". Distributed Systems Online. 34 (12): 40–46. doi:10.1109/2.970558. ISSN 0018-9162.
  16. Kaser, Owen; Lemire, Daniel (2006). "Attribute value reordering for efficient hybrid OLAP". Information Sciences. 176 (16): 2304–2336. arXiv:cs/0702143. doi:10.1016/j.ins.2005.09.005.
  17. "This Week in Graph and Entity Analytics". Datanami (in English). 2016-12-07. Retrieved 2018-03-08.
  18. "Cambridge Semantics Announces AnzoGraph Support for Amazon Neptune and Graph Databases". Database Trends and Applications (in English). 2018-02-15. Retrieved 2018-03-08.
  19. Tao, Fangbo; Zhuang, Honglei; Yu, Chi Wang; Wang, Qi; Cassidy, Taylor; Kaplan, Lance; Voss, Clare; Han, Jiawei (2016). "Multi-Dimensional, Phrase-Based Summarization in Text Cubes" (PDF).
  20. Liem, David A.; Murali, Sanjana; Sigdel, Dibakar; Shi, Yu; Wang, Xuan; Shen, Jiaming; Choi, Howard; Caufield, John H.; Wang, Wei; Ping, Peipei; Han, Jiawei (2018-10-01). "Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease". American Journal of Physiology. Heart and Circulatory Physiology. 315 (4): H910–H924. doi:10.1152/ajpheart.00175.2018. ISSN 1522-1539. PMC 6230912. PMID 29775406.
  21. Lee, S.; Kim, N.; Kim, J. (2014). A Multi-dimensional Analysis and Data Cube for Unstructured Text and Social Media. pp. 761–764. doi:10.1109/BDCloud.2014.117. ISBN 978-1-4799-6719-3. S2CID 229585. {{cite book}}: |journal= ignored (help)
  22. Ding, B.; Lin, X.C.; Han, J.; Zhai, C.; Srivastava, A.; Oza, N.C. (December 2011). "Efficient Keyword-Based Search for Top-K Cells in Text Cube". IEEE Transactions on Knowledge and Data Engineering. 23 (12): 1795–1810. doi:10.1109/TKDE.2011.34. S2CID 13960227.
  23. Ding, B.; Zhao, B.; Lin, C.X.; Han, J.; Zhai, C. (2010). TopCells: Keyword-based search of top-k aggregated documents in text cube. pp. 381–384. CiteSeerX 10.1.1.215.7504. doi:10.1109/ICDE.2010.5447838. ISBN 978-1-4244-5445-7. S2CID 14649087. {{cite book}}: |journal= ignored (help)
  24. Lin, C.X.; Ding, B.; Han, K.; Zhu, F.; Zhao, B. (2008). "Text Cube: Computing IR Measures for Multidimensional Text Database Analysis". IEEE Data Mining: 905–910. doi:10.1109/icdm.2008.135. ISBN 978-0-7695-3502-9. S2CID 1522480.
  25. Liu, X.; Tang, K.; Hancock, J.; Han, J.; Song, M.; Xu, R.; Pokorny, B. (2013-03-21). "Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science". In Greenberg, A.M.; Kennedy, W.G.; Bos, N.D. (eds.). A Text Cube Approach to Human, Social and Cultural Behavior in the Twitter Stream (7812 ed.). Berlin, Heidelberg: Springer. pp. 321–330. ISBN 978-3-642-37209-4.
  26. Nigel Pendse (2007-08-23). "Commentary: OLAP API wars". OLAP Report. Archived from the original on May 28, 2008. Retrieved 2008-03-18.
  27. "SSAS Entity Framework Provider for LINQ to SSAS OLAP".
  28. Nigel Pendse (2007-08-23). "The origins of today's OLAP products". OLAP Report. Archived from the original on December 21, 2007. Retrieved November 27, 2007.
  29. Nigel Pendse (2006). "OLAP Market". OLAP Report. Retrieved 2008-03-17.
  30. Yegulalp, Serdar (2015-06-11). "LinkedIn fills another SQL-on-Hadoop niche". InfoWorld. Retrieved 2016-11-19.
  31. "An in-process SQL OLAP database management system". DuckDB (in English). Retrieved 2022-12-10.
  32. Anand, Chillar (2022-11-17). "Common Crawl On Laptop - Extracting Subset Of Data". Avil Page (in English). Retrieved 2022-12-10.


स्रोत


श्रेणी:ऑनलाइन विश्लेषणात्मक प्रक्रिया श्रेणी:डेटा प्रबंधन