केंद्र (ज्यामिति)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (October 2011) (Learn how and when to remove this template message) |
ज्यामिति में, एक केंद्र (ब्रिटिश अंग्रेजी) या केंद्र (अमेरिकी अंग्रेजी); (from Ancient Greek κέντρον (kéntron) 'pointy object') किसी आकृति का वस्तु के मध्य में किसी अर्थ में एक बिंदु (ज्यामिति) है। ध्यान में रखे गए केंद्र की विशिष्ट परिभाषा के अनुसार, किसी वस्तु का कोई केंद्र नहीं हो सकता है। यदि ज्यामिति को आइसोमेट्री समूहों के अध्ययन के रूप में माना जाता है, तो एक केंद्र सभी आइसोमेट्री का एक निश्चित बिंदु होता है जो ऑब्जेक्ट को स्वयं पर ले जाता है।
मंडलियां, गोले और खंड
एक वृत्त का केंद्र किनारे पर बिंदुओं से समान दूरी पर स्थित बिंदु है। इसी प्रकार एक गोले का केंद्र सतह पर बिंदुओं से समदूरस्थ बिंदु होता है, और एक रेखा खंड का केंद्र दो सिरों का मध्य बिंदु होता है।
सममित वस्तुएं
कई समरूपताओं वाली वस्तुओं के लिए, समरूपता का केंद्र सममित क्रियाओं द्वारा अपरिवर्तित छोड़ दिया गया बिंदु है। तो एक वर्ग (ज्यामिति), आयत, विषमकोण या समांतर चतुर्भुज का केंद्र वह होता है जहाँ विकर्ण प्रतिच्छेद करते हैं, यह (अन्य गुणों के बीच) घूर्णी समरूपता का निश्चित बिंदु है। इसी तरह दीर्घवृत्त या अतिपरवलय का केंद्र वह होता है जहां अक्ष प्रतिच्छेद करते हैं।
त्रिकोण
त्रिभुज के कई विशेष बिंदुओं को अक्सर त्रिभुज केंद्र के रूप में वर्णित किया जाता है:
- परिकेन्द्र, जो उस वृत्त का केंद्र है जो तीनों शीर्षों (ज्यामिति) से होकर गुजरता है;
- केन्द्रक या द्रव्यमान का केंद्र, वह बिंदु जिस पर त्रिभुज संतुलित होगा यदि उसमें एकसमान घनत्व हो;
- अंतःकेंद्र, वृत्त का केंद्र जो आंतरिक रूप से त्रिभुज की तीनों भुजाओं को स्पर्श करता है;
- लम्बकेन्द्र, त्रिभुज की तीन ऊँचाई (ज्यामिति) का प्रतिच्छेदन; और
- नौ-बिंदु केंद्र|नौ-बिंदु केंद्र, वृत्त का केंद्र जो त्रिभुज के नौ प्रमुख बिंदुओं से होकर गुजरता है।
एक समबाहु त्रिभुज के लिए, ये वही बिंदु होते हैं, जो त्रिभुज के समरूपता के तीन अक्षों के चौराहे पर स्थित होते हैं, जो इसके आधार से शीर्ष तक की दूरी का एक तिहाई होता है।
एक त्रिकोण केंद्र की एक सख्त परिभाषा एक बिंदु है जिसका ट्रिलिनियर निर्देशांक f(a,b,c) : f(b,c,a) : f(c,a,b) है जहां f की लंबाई का एक फ़ंक्शन है त्रिभुज की तीन भुजाएँ, a, b, c इस प्रकार हैं कि:
- एफ ए, बी, सी में सजातीय है; अर्थात, f(ta,tb,tc)=thf(a,b,c) कुछ वास्तविक शक्ति के लिए h; इस प्रकार एक केंद्र की स्थिति पैमाने से स्वतंत्र होती है।
- f अपने अंतिम दो तर्कों में सममित है; यानी, एफ (ए, बी, सी) = एफ (ए, सी, बी); इस प्रकार एक दर्पण-प्रतिबिंब त्रिभुज में एक केंद्र की स्थिति मूल त्रिभुज में इसकी स्थिति की दर्पण-प्रतिबिंब है।[1]
इस सख्त परिभाषा में ब्रोकार्ड बिंदुओं (जो एक दर्पण-छवि प्रतिबिंब द्वारा आपस में जुड़े हुए हैं) जैसे द्विकेंद्रित बिंदुओं के जोड़े शामिल नहीं हैं। 2020 तक, त्रिभुज केंद्रों का विश्वकोश 39,000 से अधिक विभिन्न त्रिभुज केंद्रों को सूचीबद्ध करता है।[2]
स्पर्शरेखा बहुभुज और चक्रीय बहुभुज
एक स्पर्शरेखा बहुभुज की प्रत्येक भुजा एक विशेष वृत्त की स्पर्शरेखा होती है, जिसे अंतर्वृत्त या अंतर्वृत्त कहा जाता है। अंतर्वृत्त का केंद्र, जिसे अंत:केन्द्र कहा जाता है, को बहुभुज का केंद्र माना जा सकता है।
एक चक्रीय बहुभुज का प्रत्येक शीर्ष एक विशेष वृत्त पर होता है, जिसे परिवृत्त या परिबद्ध वृत्त कहा जाता है। परिवृत्त का केंद्र, जिसे परिकेन्द्र कहा जाता है, को बहुभुज का केंद्र माना जा सकता है।
यदि एक बहुभुज स्पर्शरेखा और चक्रीय दोनों है, तो इसे द्विकेंद्रित बहुभुज कहा जाता है। (उदाहरण के लिए, सभी त्रिभुज द्विकेन्द्रित होते हैं।) एक द्विकेन्द्रीय बहुभुज का अंतःकेन्द्र और परिकेन्द्र सामान्यतः समान बिंदु नहीं होते हैं।
सामान्य बहुभुज
एक सामान्य बहुभुज के केंद्र को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। वर्टेक्स सेंट्रोइड बहुभुज को खाली मानने से आता है लेकिन इसके शीर्ष पर समान द्रव्यमान होता है। पक्ष केन्द्रक पक्षों पर विचार करने से प्रति इकाई लंबाई में निरंतर द्रव्यमान होता है। सामान्य केंद्र, जिसे केवल केंद्रक (क्षेत्र का केंद्र) कहा जाता है, बहुभुज की सतह को निरंतर घनत्व के रूप में मानने से आता है। ये तीन बिंदु सामान्य रूप से एक ही बिंदु नहीं हैं।
प्रक्षेपी शंकु
प्रक्षेपी ज्यामिति में प्रत्येक रेखा में अनंत या आलंकारिक बिंदु पर एक बिंदु होता है जहां यह सभी समानांतर रेखाओं को पार करता है। यूक्लिडियन ज्यामिति के दीर्घवृत्त, परवलय और अतिपरवलय को प्रक्षेपी ज्यामिति में शांकव कहा जाता है और एक प्रक्षेप्यता से स्टेनर शंकु के रूप में निर्मित किया जा सकता है जो एक परिप्रेक्ष्य नहीं है। किसी दिए गए शंकु के साथ प्रक्षेप्य तल की समरूपता प्रत्येक बिंदु या ध्रुव और ध्रुवीय को एक रेखा से संबंधित करती है जिसे उसका ध्रुव और ध्रुवीय कहा जाता है। प्रक्षेपी ज्यामिति में केंद्र की अवधारणा इस संबंध का उपयोग करती है। निम्नलिखित अभिकथन G. B. Halsted के हैं।[3]
- किसी परिमित संप्रदाय के अंत बिंदुओं के संबंध में अनंत पर एक बिंदु का प्रक्षेप्य हार्मोनिक संयुग्मन उस संप्रदाय का 'केंद्र' है।
- किसी निश्चित शंकु के संबंध में अनंत पर सीधे का ध्रुव शंकु का 'केंद्र' है।
- किसी भी आलंकारिक बिंदु का ध्रुव शंकु के केंद्र पर होता है और इसे 'व्यास' कहा जाता है।
- किसी भी दीर्घवृत्त का केंद्र उसके भीतर होता है, क्योंकि उसका ध्रुवीय वक्र से नहीं मिलता है, और इसलिए इससे वक्र पर कोई स्पर्श रेखा नहीं होती है। एक परवलय का केंद्र आलंकारिक सीधे का संपर्क बिंदु है।
- एक अतिपरवलय का केंद्र वक्र के बिना स्थित है, क्योंकि आलंकारिक सीधे वक्र को पार करता है। केंद्र से अतिपरवलय तक की स्पर्श रेखाओं को 'असिम्पटोट्स' कहा जाता है। उनके संपर्क बिंदु वक्र पर अनंत पर दो बिंदु हैं।
यह भी देखें
- केंद्रबिंदु (ज्यामिति)
- सेंटर ऑफ मास
- चेबिशेव केंद्र
- यूक्लिडियन अंतरिक्ष में आइसोमेट्री समूहों के निश्चित बिंदु
संदर्भ
- ↑ Algebraic Highways in Triangle Geometry Archived January 19, 2008, at the Wayback Machine
- ↑ Kimberling, Clark. "This is PART 20: Centers X(38001) - X(40000)". Encyclopedia of Triangle Centers.
- ↑ G. B. Halsted (1903) Synthetic Projective Geometry, #130, #131, #132, #139