शक्ति अर्धचालक उपकरण

From Vigyanwiki
Revision as of 14:34, 15 February 2023 by alpha>Indicwiki (Created page with "{{short description|Semiconductor device capable of handling large amounts of electricity}} पावर अर्धचालक उपकरण एक सेमीकं...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

पावर अर्धचालक उपकरण एक सेमीकंडक्टर डिवाइस है जिसका उपयोग बिजली के इलेक्ट्रॉनिक्स में बदलना या सही करनेवाला के रूप में किया जाता है (उदाहरण के लिए स्विच-मोड बिजली की आपूर्ति में)। इस तरह के उपकरण को पावर डिवाइस भी कहा जाता है या, जब एक एकीकृत सर्किट में उपयोग किया जाता है, तो एक पावर आईसी।

एक पावर सेमीकंडक्टर डिवाइस आमतौर पर कम्यूटेशन मोड में उपयोग किया जाता है (यानी, यह या तो चालू या बंद है), और इसलिए इस तरह के उपयोग के लिए एक डिज़ाइन अनुकूलित है; यह आमतौर पर रैखिक संचालन में उपयोग नहीं किया जाना चाहिए। रैखिक बिजली सर्किट वोल्टेज नियामकों, ऑडियो एम्पलीफायरों और रेडियो फ्रीक्वेंसी एम्पलीफायरों के रूप में व्यापक हैं।

पावर सेमीकंडक्टर्स एक हेडफ़ोन एम्पलीफायर के लिए कुछ दसियों मिलीवाट जितना कम देने वाले सिस्टम में पाए जाते हैं, जो एक उच्च वोल्टेज प्रत्यक्ष वर्तमान ट्रांसमिशन लाइन में एक गीगावाट तक होता है।

इतिहास

विद्युत परिपथों में उपयोग किया जाने वाला पहला इलेक्ट्रॉनिक उपकरण इलेक्ट्रोलाइटिक सुधारक था - एक प्रारंभिक संस्करण का वर्णन एक फ्रांसीसी प्रयोगकर्ता, ए. नोडोन ने 1904 में किया था। ये शुरुआती रेडियो प्रयोगकर्ताओं के साथ संक्षिप्त रूप से लोकप्रिय थे क्योंकि उन्हें एल्यूमीनियम शीट और घरेलू रसायनों से सुधारा जा सकता था। . उनके पास कम वोल्टेज और सीमित दक्षता थी।[1] पहले सॉलिड-स्टेट पॉवर सेमीकंडक्टर डिवाइस कॉपर ऑक्साइड रेक्टिफायर थे, जिनका इस्तेमाल शुरुआती बैटरी चार्जर्स और रेडियो उपकरणों के लिए बिजली की आपूर्ति में किया जाता था, जिसकी घोषणा 1927 में L.O. Grundahl और P. H. Geiger।[2] पहला जर्मेनियम पावर सेमीकंडक्टर डिवाइस 1952 में रॉबर्ट एन. हॉल|आर.एन. द्वारा पावर डायोड की शुरुआत के साथ दिखाई दिया। बड़ा कमरा। इसमें 200 वोल्ट की रिवर्स वोल्टेज अवरोधक क्षमता और 35 एम्पीयर की वर्तमान रेटिंग थी।

1952 के आसपास पर्याप्त शक्ति संचालन क्षमताओं (100 mA कलेक्टर करंट) के साथ जर्मेनियम द्विध्रुवी ट्रांजिस्टर पेश किए गए थे; अनिवार्य रूप से सिग्नल डिवाइस के समान निर्माण के साथ, लेकिन बेहतर हीट सिंकिंग। पावर हैंडलिंग क्षमता तेजी से विकसित हुई, और 1954 तक जर्मेनियम मिश्र धातु जंक्शन ट्रांजिस्टर 100 वाट अपव्यय के साथ उपलब्ध थे। ये सभी अपेक्षाकृत कम आवृत्ति वाले उपकरण थे, जिनका उपयोग लगभग 100 kHz तक और 85 डिग्री सेल्सियस जंक्शन तापमान तक किया जाता था।[3] सिलिकॉन पावर ट्रांजिस्टर 1957 तक नहीं बनाए गए थे, लेकिन जब उपलब्ध थे तो जर्मेनियम उपकरणों की तुलना में बेहतर आवृत्ति प्रतिक्रिया थी, और 150 सी जंक्शन तापमान तक काम कर सकते थे।

thyristor 1957 में दिखाई दिया। यह बहुत उच्च रिवर्स ब्रेकडाउन वोल्टेज का सामना करने में सक्षम है और उच्च धारा को ले जाने में भी सक्षम है। हालाँकि, स्विचिंग सर्किट में थाइरिस्टर का एक नुकसान यह है कि एक बार यह कंडक्टिंग अवस्था में 'लैच्ड-ऑन' हो जाता है; इसे बाहरी नियंत्रण से बंद नहीं किया जा सकता है, क्योंकि थाइरिस्टर टर्न-ऑफ निष्क्रिय है, यानी, डिवाइस से बिजली काट दी जानी चाहिए। थायरिस्टर्स जिन्हें बंद किया जा सकता था, जिन्हें गेट टर्न-ऑफ थाइरिस्टर्स (जीटीओ) कहा जाता था, 1960 में पेश किए गए थे।[4] ये साधारण थाइरिस्टर की कुछ सीमाओं को पार कर जाते हैं, क्योंकि इन्हें लागू सिग्नल के साथ चालू या बंद किया जा सकता है।

पावर MOSFET

1959 में बेल लैब्स में मोहम्मद ओटाला और डॉन काहंग द्वारा MOSFET (मेटल-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ पावर इलेक्ट्रॉनिक्स में एक सफलता मिली। MOSFET ट्रांजिस्टर की पीढ़ी ने पावर डिजाइनरों को प्रदर्शन और घनत्व स्तर प्राप्त करने में सक्षम बनाया जो संभव नहीं था। द्विध्रुवी ट्रांजिस्टर के साथ।[5] MOSFET प्रौद्योगिकी में सुधार के कारण (शुरुआत में एकीकृत सर्किट का उत्पादन करने के लिए उपयोग किया जाता था), 1970 के दशक में MOSFET शक्ति उपलब्ध हो गई।

1969 में, Hitachi ने पहला वर्टिकल पॉवर MOSFET पेश किया,[6] जिसे बाद में VMOS (V-groove MOSFET) के नाम से जाना जाएगा।[7] 1974 से, Yamaha Corporation, JVC, Pioneer Corporation, Sony और Toshiba ने पावर MOSFETs के साथ ऑडियो एंप्लिफायर का निर्माण शुरू किया।[8] अंतर्राष्ट्रीय सुधारक ने 1978 में 25 ए, 400 वी पावर एमओएसएफईटी पेश किया।[9] यह उपकरण द्विध्रुवी ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालन की अनुमति देता है, लेकिन कम वोल्टेज अनुप्रयोगों तक ही सीमित है।

विद्युत रोधित गेट द्विध्रुवी ट्रांजिस्टर (IGBT) 1980 के दशक में विकसित किया गया था, और 1990 के दशक में व्यापक रूप से उपलब्ध हो गया। इस घटक में द्विध्रुवी ट्रांजिस्टर की शक्ति से निपटने की क्षमता और बिजली MOSFET के पृथक गेट ड्राइव के फायदे हैं।

सामान्य उपकरण

कुछ सामान्य बिजली उपकरण हैं पावर MOSFET, पावर डायोड, थाइरिस्टर और IGBT। पावर डायोड और पावर एमओएसएफईटी अपने कम-पावर समकक्षों के समान सिद्धांतों पर काम करते हैं, लेकिन बड़ी मात्रा में करंट ले जाने में सक्षम होते हैं और आमतौर पर एक बड़े पूर्वाग्रह वोल्टेज का सामना करने में सक्षम होते हैं। ऑफ-स्टेट में रिवर्स-बायस वोल्टेज।

उच्च वर्तमान घनत्व, उच्च शक्ति अपव्यय, और / या उच्च रिवर्स ब्रेकडाउन वोल्टेज को समायोजित करने के लिए संरचनात्मक परिवर्तन अक्सर एक बिजली उपकरण में किए जाते हैं। असतत घटक (यानी, गैर-एकीकृत) बिजली उपकरणों का विशाल बहुमत एक ऊर्ध्वाधर संरचना का उपयोग करके बनाया गया है, जबकि छोटे-सिग्नल डिवाइस एक पार्श्व संरचना का उपयोग करते हैं। ऊर्ध्वाधर संरचना के साथ, डिवाइस की वर्तमान रेटिंग उसके क्षेत्र के लिए आनुपातिक है, और मरने की ऊंचाई में वोल्टेज अवरोधन क्षमता हासिल की जाती है। इस संरचना के साथ, डिवाइस का एक कनेक्शन डाई (एकीकृत सर्किट) के तल पर स्थित है।

पावर एमओएसएफईटी दुनिया में सबसे आम बिजली उपकरण है, इसकी कम गेट ड्राइव पावर, तेज स्विचिंग गति और उन्नत समांतर क्षमता के कारण।[10] इसमें पावर इलेक्ट्रॉनिक्स अनुप्रयोगों की एक विस्तृत श्रृंखला है, जैसे पोर्टेबल सूचना उपकरण, बिजली एकीकृत सर्किट, सेल फोन, नोटबुक कंप्यूटर और इंटरनेट को सक्षम करने वाली संचार अवसंरचना[11] 2010 तक, बिजली MOSFET बिजली ट्रांजिस्टर बाजार के बहुमत (53%) के लिए खाता है, उसके बाद IGBT (27%), फिर आरएफ एम्पलीफायर (11%), और फिर द्विध्रुवी जंक्शन ट्रांजिस्टर (9%)।[12]


सॉलिड-स्टेट डिवाइस

Device Description Ratings
Diode Uni-polar, uncontrolled, switching device used in applications such as rectification and circuit directional current control. Reverse voltage blocking device, commonly modeled as a switch in series with a voltage source, usually 0.7 VDC. The model can be enhanced to include a junction resistance, in order to accurately predict the diode voltage drop across the diode with respect to current flow. Up to 3000 amperes and 5000 volts in a single silicon device. High voltage requires multiple series silicon devices.
Silicon-controlled rectifier (SCR) This semi-controlled device turns on when a gate pulse is present and the anode is positive compared to the cathode. When a gate pulse is present, the device operates like a standard diode. When the anode is negative compared to the cathode, the device turns off and blocks positive or negative voltages present. The gate voltage does not allow the device to turn off.[13] Up to 3000 amperes, 5000 volts in a single silicon device.
Thyristor The thyristor is a family of three-terminal devices that include SCRs, GTOs, and MCT. For most of the devices, a gate pulse turns the device on. The device turns off when the anode voltage falls below a value (relative to the cathode) determined by the device characteristics. When off, it is considered a reverse voltage blocking device.[13]
Gate turn-off thyristor (GTO) The gate turn-off thyristor, unlike an SCR, can be turned on and off with a gate pulse. One issue with the device is that turn off gate voltages are usually larger and require more current than turn on levels. This turn off voltage is a negative voltage from gate to source, usually it only needs to be present for a short time, but the magnitude s on the order of 1/3 of the anode current. A snubber circuit is required in order to provide a usable switching curve for this device. Without the snubber circuit, the GTO cannot be used for turning inductive loads off. These devices, because of developments in IGCT technology are not very popular in the power electronics realm. They are considered controlled, uni-polar and bi-polar voltage blocking.[14]
Triac The triac is a device that is essentially an integrated pair of phase-controlled thyristors connected in inverse-parallel on the same chip.[15] Like an SCR, when a voltage pulse is present on the gate terminal, the device turns on. The main difference between an SCR and a Triac is that both the positive and negative cycle can be turned on independently of each other, using a positive or negative gate pulse. Similar to an SCR, once the device is turned on, the device cannot be turned off. This device is considered bi-polar and reverse voltage blocking.
Bipolar junction transistor (BJT) The BJT cannot be used at high power; they are slower and have more resistive losses when compared to MOSFET type devices. To carry high current, BJTs must have relatively large base currents, thus these devices have high power losses when compared to MOSFET devices. BJTs along with MOSFETs, are also considered unipolar[clarify] and do not block reverse voltage very well, unless installed in pairs with protection diodes. Generally, BJTs are not utilized in power electronics switching circuits because of the I2R losses associated with on resistance and base current requirements.[13] BJTs have lower current gains in high power packages, thus requiring them to be set up in Darlington configurations in order to handle the currents required by power electronic circuits. Because of these multiple transistor configurations, switching times are in the hundreds of nanoseconds to microseconds. Devices have voltage ratings which max out around 1500 V and fairly high current ratings. They can also be paralleled in order to increase power handling, but must be limited to around 5 devices for current sharing.[14]
Power MOSFET The main benefit of the power MOSFET compared to the BJT is that the MOSFET is a depletion channel device and so voltage, not current, is necessary to create a conduction path from drain to source. At low frequencies this greatly reduces gate current because it is only required to charge gate capacitance during switching, though as frequencies increase this advantage is reduced. Most losses in MOSFETs are due to on-resistance, can increase as more current flows through the device and are also greater in devices that must provide a high blocking voltage. BVdss.

Switching times range from tens of nanoseconds to a few hundred microseconds. Nominal voltages for MOSFET switching devices range from a few volts to a little over 1000 V, with currents up to about 100 A or so, though MOSFETs can be paralleled to increase switching current. MOSFET devices are not bi-directional, nor are they reverse voltage blocking.[14]

Insulated-gate bipolar transistor (IGBT) These devices have the best characteristics of MOSFETs and BJTs. Like MOSFET devices, the insulated gate bipolar transistor has a high gate impedance, thus low gate current requirements. Like BJTs, this device has low on state voltage drop, thus low power loss across the switch in operating mode. Similar to the GTO, the IGBT can be used to block both positive and negative voltages. Operating currents are fairly high, in excess of 1500 A and switching voltage up to 3000 V.[14] The IGBT has reduced input capacitance compared to MOSFET devices which improves the Miller feedback effect during high dv/dt turn on and turn off.[15]
MOS-controlled thyristor (MCT) The MOS-controlled thyristor is thyristor like and can be triggered on or off by a pulse to the MOSFET gate.[15] Since the input is MOS technology, there is very little current flow, allowing for very low power control signals. The device is constructed with two MOSFET inputs and a pair of BJT output stages. Input MOSFETs are configured to allow turn on control during positive and negative half cycles. The output BJTs are configured to allow for bidirectional control and low voltage reverse blocking. Some benefits to the MCT are fast switching frequencies, fairly high voltage and medium current ratings (around 100 A or so).
Integrated gate-commutated thyristor (IGCT) Similar to a GTO, but without the high current requirements to turn on or off the load. The IGCT can be used for quick switching with little gate current. The devices high input impedance largely because of the MOSFET gate drivers. They have low resistance outputs that don't waste power and very fast transient times that rival that of BJTs. ABB Group company has published data sheets for these devices and provided descriptions of the inner workings. The device consists of a gate, with an optically isolated input, low on resistance BJT output transistors which lead to a low voltage drop and low power loss across the device at fairly high switching voltage and current levels.

An example of this new device from ABB shows how this device improves on GTO technology for switching high voltage and high current in power electronics applications. According to ABB, the IGCT devices are capable of switching in excess of 5000 VAC and 5000 A at very high frequencies, something not possible to do efficiently with GTO devices.[16]


वर्गीकरण

[[image:Power devices family.png|thumb|450px|चित्र 1: बिजली उपकरणों का परिवार, प्रमुख बिजली स्विच दिखा रहा है।

एक बिजली उपकरण को निम्नलिखित मुख्य श्रेणियों में से एक के रूप में वर्गीकृत किया जा सकता है (चित्र 1 देखें):

  • एक दो-टर्मिनल डिवाइस (जैसे, एक डायोड), जिसकी स्थिति पूरी तरह से उस बाहरी पावर सर्किट पर निर्भर है जिससे यह जुड़ा हुआ है।
  • एक तीन-टर्मिनल डिवाइस (उदाहरण के लिए, एक ट्रायोड), जिसका राज्य न केवल इसके बाहरी पावर सर्किट पर निर्भर है, बल्कि इसके ड्राइविंग टर्मिनल पर सिग्नल भी है (इस टर्मिनल को गेट या बेस के रूप में जाना जाता है)।
  • एक चार टर्मिनल डिवाइस (जैसे सिलिकॉन नियंत्रित स्विच -एससीएस)। SCS एक प्रकार का थाइरिस्टर है जिसमें चार परतें और चार टर्मिनल होते हैं जिन्हें एनोड, एनोड गेट, कैथोड गेट और कैथोड कहा जाता है। टर्मिनल क्रमशः पहली, दूसरी, तीसरी और चौथी परत से जुड़े होते हैं।[17] एक और वर्गीकरण कम स्पष्ट है, लेकिन डिवाइस के प्रदर्शन पर इसका गहरा प्रभाव है:
  • एक बहुसंख्यक वाहक उपकरण (जैसे, एक स्कॉटकी डायोड, एक MOSFET, आदि); यह केवल एक प्रकार के आवेश वाहकों का उपयोग करता है।
  • एक माइनॉरिटी कैरियर डिवाइस (जैसे, एक थाइरिस्टर, एक बाइपोलर ट्रांजिस्टर, एक IGBT, आदि); यह बहुसंख्यक और अल्पसंख्यक दोनों वाहकों (यानी, इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्रों) का उपयोग करता है।

बहुसंख्यक वाहक उपकरण तेज होता है, लेकिन अल्पसंख्यक वाहक उपकरणों का चार्ज इंजेक्शन बेहतर ऑन-स्टेट प्रदर्शन की अनुमति देता है।

डायोड

एक आदर्श डायोड में निम्नलिखित विशेषताएं होनी चाहिए:

  • अग्र-अभिनत होने पर, डायोड के अंत टर्मिनलों पर वोल्टेज शून्य होना चाहिए, इससे कोई फर्क नहीं पड़ता कि वर्तमान (ऑन-स्टेट) प्रवाहित होता है।
  • रिवर्स-बायस्ड होने पर, लीकेज करंट शून्य होना चाहिए, चाहे वोल्टेज (ऑफ-स्टेट) कोई भी हो।
  • ऑन-स्टेट और ऑफ-स्टेट के बीच संक्रमण (या रूपांतरण) तात्कालिक होना चाहिए।

हकीकत में, डायोड का डिज़ाइन ऑन-स्टेट, ऑफ-स्टेट और कम्यूटेशन में प्रदर्शन के बीच एक व्यापार-बंद है। दरअसल, डिवाइस के एक ही क्षेत्र को ऑफ-स्टेट में ब्लॉकिंग वोल्टेज को बनाए रखना चाहिए और ऑन-स्टेट में करंट प्रवाह की अनुमति देनी चाहिए; चूंकि दो राज्यों की आवश्यकताएं पूरी तरह से विपरीत हैं, एक डायोड को या तो उनमें से एक के लिए अनुकूलित किया जाना चाहिए, या समय को एक राज्य से दूसरे राज्य में स्विच करने की अनुमति दी जानी चाहिए (यानी, रूपांतरण की गति कम होनी चाहिए)।

ये ट्रेड-ऑफ सभी बिजली उपकरणों के लिए समान हैं; उदाहरण के लिए, एक Schottky डायोड में उत्कृष्ट स्विचिंग गति और ऑन-स्टेट प्रदर्शन होता है, लेकिन ऑफ-स्टेट में उच्च स्तर का लीकेज करंट होता है। दूसरी ओर, एक पिन डायोड व्यावसायिक रूप से विभिन्न कम्यूटेशन गति (जिसे तेज और अल्ट्राफास्ट रेक्टिफायर कहा जाता है) में उपलब्ध है, लेकिन गति में कोई भी वृद्धि आवश्यक रूप से ऑन-स्टेट में कम प्रदर्शन से जुड़ी है।

स्विच

[[image:Switches domain.svg|thumb|350px|चित्र 2: मुख्य पावर इलेक्ट्रॉनिक्स स्विच के करंट/वोल्टेज/स्विचिंग फ्रीक्वेंसी डोमेन।

एक स्विच के लिए वोल्टेज, करंट और फ्रीक्वेंसी रेटिंग के बीच ट्रेड-ऑफ भी मौजूद है। वास्तव में, वोल्टेज को बनाए रखने के लिए कोई भी पावर सेमीकंडक्टर एक पिन डायोड संरचना पर निर्भर करता है; यह चित्र 2 में देखा जा सकता है। शक्ति MOSFET में बहुसंख्यक वाहक उपकरण के फायदे हैं, इसलिए यह बहुत उच्च परिचालन आवृत्ति प्राप्त कर सकता है, लेकिन इसका उपयोग उच्च वोल्टेज के साथ नहीं किया जा सकता है; चूंकि यह एक भौतिक सीमा है, इसकी अधिकतम वोल्टेज रेटिंग के संबंध में सिलिकॉन एमओएसएफईटी के डिजाइन में कोई सुधार अपेक्षित नहीं है। हालांकि, कम वोल्टेज अनुप्रयोगों में इसका उत्कृष्ट प्रदर्शन इसे 200 V से कम वोल्टेज वाले अनुप्रयोगों के लिए पसंद का उपकरण (वास्तव में एकमात्र विकल्प, वर्तमान में) बनाता है। कई उपकरणों को समानांतर में रखकर, स्विच की वर्तमान रेटिंग को बढ़ाना संभव है। एमओएसएफईटी विशेष रूप से इस कॉन्फ़िगरेशन के लिए उपयुक्त है, क्योंकि प्रतिरोध के सकारात्मक थर्मल गुणांक के परिणामस्वरूप अलग-अलग उपकरणों के बीच वर्तमान संतुलन होता है।

IGBT एक हालिया घटक है, इसलिए जैसे-जैसे तकनीक विकसित होती है, इसके प्रदर्शन में नियमित रूप से सुधार होता है। यह पहले से ही बिजली अनुप्रयोगों में द्विध्रुवी ट्रांजिस्टर को पूरी तरह से बदल चुका है; एक पावर मॉड्यूल उपलब्ध है जिसमें कई आईजीबीटी डिवाइस समानांतर में जुड़े हुए हैं, जो इसे कई मेगावाट तक बिजली के स्तर के लिए आकर्षक बनाता है, जो उस सीमा को आगे बढ़ाता है जिस पर थायरिस्टर्स और गेट टर्न-ऑफ थाइरिस्टर एकमात्र विकल्प बन जाते हैं। मूल रूप से, एक आईजीबीटी एक द्विध्रुवीय ट्रांजिस्टर है जो एक शक्ति एमओएसएफईटी द्वारा संचालित होता है; इसमें MOSFET के उच्च इनपुट प्रतिबाधा के साथ अल्पसंख्यक वाहक उपकरण (ऑन-स्टेट में अच्छा प्रदर्शन, यहां तक ​​कि उच्च वोल्टेज उपकरणों के लिए अच्छा प्रदर्शन) होने के फायदे हैं (इसे बहुत कम मात्रा में बिजली के साथ चालू या बंद किया जा सकता है) .

निम्न वोल्टेज अनुप्रयोगों के लिए IGBT की प्रमुख सीमा उच्च वोल्टेज ड्रॉप है जो इसे ऑन-स्टेट (2-से-4 V) में प्रदर्शित करता है। MOSFET की तुलना में, IGBT की ऑपरेटिंग आवृत्ति अपेक्षाकृत कम है (आमतौर पर 50 kHz से अधिक नहीं), मुख्य रूप से टर्न-ऑफ़ के दौरान एक समस्या के कारण करंट-टेल के रूप में जाना जाता है: टर्न-ऑफ परिणामों के दौरान कंडक्शन करंट का धीमा क्षय चालन के दौरान बड़ी संख्या में वाहकों के धीमे पुनर्संयोजन से आईजीबीटी के मोटे 'बहाव' क्षेत्र में बाढ़ आती है। शुद्ध परिणाम यह है कि टर्न-ऑफ switching loss [de] एक IGBT का टर्न-ऑन नुकसान की तुलना में काफी अधिक है। आम तौर पर, डेटाशीट्स में, टर्न-ऑफ एनर्जी को मापे गए पैरामीटर के रूप में वर्णित किया जाता है; टर्न-ऑफ नुकसान का अनुमान लगाने के लिए उस संख्या को इच्छित एप्लिकेशन की स्विचिंग आवृत्ति के साथ गुणा करना होगा।

बहुत उच्च शक्ति स्तरों पर, एक थाइरिस्टर-आधारित उपकरण (जैसे, एक सिलिकॉन-नियंत्रित दिष्टकारी, एक GTO, एक MOS-नियंत्रित थाइरिस्टर, आदि) अभी भी अक्सर उपयोग किया जाता है। इस उपकरण को एक ड्राइविंग सर्किट द्वारा प्रदान की गई पल्स द्वारा चालू किया जा सकता है, लेकिन पल्स को हटाकर इसे बंद नहीं किया जा सकता है। एक थाइरिस्टर बंद हो जाता है जैसे ही इसके माध्यम से कोई और धारा प्रवाहित नहीं होती है; यह स्वचालित रूप से प्रत्येक चक्र पर एक वैकल्पिक चालू प्रणाली में होता है, या डिवाइस के चारों ओर करंट को डायवर्ट करने के लिए एक सर्किट की आवश्यकता होती है। इस सीमा को पार करने के लिए एमसीटी और जीटीओ दोनों विकसित किए गए हैं, और बिजली वितरण अनुप्रयोगों में व्यापक रूप से उपयोग किए जाते हैं।

स्विच मोड में पावर सेमीकंडक्टर्स के कुछ अनुप्रयोगों में लैंप मद्धम्स, स्विच मोड बिजली की आपूर्ति, इंडक्शन कुकर, ऑटोमोटिव ज्वलन प्रणाली और सभी आकारों के एसी और डीसी इलेक्ट्रिक मोटर ड्राइव शामिल हैं।

एम्पलीफायर

एम्पलीफायर सक्रिय क्षेत्र में काम करते हैं, जहां डिवाइस करंट और वोल्टेज दोनों गैर-शून्य हैं। नतीजतन शक्ति लगातार छितरी हुई है और सेमीकंडक्टर डिवाइस से अतिरिक्त गर्मी को हटाने की आवश्यकता पर इसका डिजाइन हावी है। पावर एम्पलीफायर उपकरणों को अक्सर उपकरणों को माउंट करने के लिए उपयोग किए जाने वाले ताप सिंक द्वारा पहचाना जा सकता है। कई प्रकार के पावर सेमीकंडक्टर एम्पलीफायर डिवाइस मौजूद हैं, जैसे कि बाइपोलर जंक्शन ट्रांजिस्टर, वर्टिकल एमओएस फील्ड इफेक्ट ट्रांजिस्टर और अन्य। व्यक्तिगत एम्पलीफायर उपकरणों के लिए बिजली का स्तर सैकड़ों वाट तक होता है, और आवृत्ति सीमा कम माइक्रोवेव बैंड तक होती है। एक पूर्ण ऑडियो पावर एम्पलीफायर, दो चैनलों के साथ और दसियों वाट के क्रम पर एक पावर रेटिंग, एक छोटे एकीकृत सर्किट पैकेज में डाला जा सकता है, जिसे कार्य करने के लिए केवल कुछ बाहरी निष्क्रिय घटकों की आवश्यकता होती है। सक्रिय-मोड एम्पलीफायरों के लिए एक अन्य महत्वपूर्ण अनुप्रयोग रैखिक विनियमित बिजली आपूर्ति में है, जब एक एम्पलीफायर डिवाइस को वांछित सेटिंग पर लोड वोल्टेज बनाए रखने के लिए वोल्टेज नियामक के रूप में उपयोग किया जाता है। हालांकि इस तरह की बिजली आपूर्ति स्विच्ड मोड बिजली आपूर्ति की तुलना में कम ऊर्जा कुशल हो सकती है, आवेदन की सादगी उन्हें लोकप्रिय बनाती है, खासकर मौजूदा रेंज में लगभग एक amp तक।

पैरामीटर

[[image:Thermal stack.svg|thumb|400px| पावर डिवाइस आमतौर पर ऑपरेशन के नुकसान के कारण होने वाली गर्मी को दूर करने के लिए ताप सिंक से जुड़ा होता है।

पावर सेमीकंडक्टर तीन-टर्मिनल डिवाइस (IGBT, MOSFET या BJT) से मर जाता है। दो संपर्क डाई के शीर्ष पर हैं, शेष एक पीछे की ओर है।

#ब्रेकडाउन वोल्टेज: अक्सर, ब्रेकडाउन वोल्टेज रेटिंग और ऑन-रेसिस्टेंस के बीच एक ट्रेड-ऑफ होता है, क्योंकि एक मोटे और निचले डोप्ड ड्रिफ्ट क्षेत्र को शामिल करके ब्रेकडाउन वोल्टेज को बढ़ाने से उच्च ऑन-रेसिस्टेंस होता है।

  1. ऑन-रेसिस्टेंस: उच्च करंट रेटिंग समानांतर सेल की अधिक संख्या के कारण ऑन-रेसिस्टेंस को कम करती है। यह समग्र समाई को बढ़ाता है और गति को धीमा कर देता है।
  2. उदय और पतन का समय: ऑन-स्टेट और ऑफ-स्टेट के बीच स्विच करने में जितना समय लगता है।
  3. सुरक्षित-संचालन क्षेत्र: यह एक थर्मल अपव्यय और लैच-अप विचार है।
  4. थर्मल प्रतिरोध: व्यावहारिक डिजाइन के दृष्टिकोण से यह अक्सर उपेक्षित लेकिन अत्यंत महत्वपूर्ण पैरामीटर है; एक सेमीकंडक्टर ऊंचे तापमान पर अच्छा प्रदर्शन नहीं करता है, और फिर भी बड़े करंट कंडक्शन के कारण, एक पावर सेमीकंडक्टर डिवाइस हमेशा गर्म होता है। इसलिए, ऐसे उपकरणों को उस गर्मी को लगातार हटाकर ठंडा करने की आवश्यकता होती है; पैकेजिंग और हीटसिंक तकनीक एक सेमीकंडक्टर डिवाइस से गर्मी को बाहरी वातावरण में ले जाने के लिए एक साधन प्रदान करती है। आम तौर पर, एक बड़े वर्तमान उपकरण में एक बड़ा डाई और पैकेजिंग सतह क्षेत्र और कम तापीय प्रतिरोध होता है।

अनुसंधान और विकास

पैकेजिंग

पैकेजिंग की भूमिका है:

  • एक डाई को बाहरी सर्किट से कनेक्ट करें।
  • डिवाइस द्वारा उत्पन्न गर्मी को दूर करने का एक तरीका प्रदान करें।
  • डाई को बाहरी वातावरण (नमी, धूल, आदि) से बचाएं।

बिजली उपकरण की विश्वसनीयता के कई मुद्दे या तो अत्यधिक तापमान या थर्मल साइकलिंग के कारण थकान से संबंधित हैं। अनुसंधान वर्तमान में निम्नलिखित विषयों पर किया जाता है:

  • ठंडा प्रदर्शन।
  • पैकेजिंग के थर्मल विस्तार के गुणांक को सिलिकॉन के साथ निकटता से मिलान करके थर्मल साइकलिंग का प्रतिरोध।
  • पैकेजिंग सामग्री का अधिकतम ऑपरेटिंग तापमान।

पैकेजिंग के परजीवी अधिष्ठापन को कम करने जैसे बिजली के मुद्दों पर भी अनुसंधान चल रहा है; यह अधिष्ठापन ऑपरेटिंग आवृत्ति को सीमित करता है, क्योंकि यह रूपांतरण के दौरान नुकसान उत्पन्न करता है।

एक लो-वोल्टेज MOSFET भी इसके पैकेज के परजीवी प्रतिरोध द्वारा सीमित है, क्योंकि इसका आंतरिक ऑन-स्टेट प्रतिरोध एक या दो मिलीओएचएम जितना कम है।

कुछ सबसे सामान्य प्रकार के पावर सेमीकंडक्टर पैकेज में TO-220, TO-247, TO-262, TO-3, D शामिल हैं।2पाक, आदि।

संरचनाओं में सुधार

आईजीबीटी डिजाइन अभी भी विकास के अधीन है और ऑपरेटिंग वोल्टेज में बढ़ोतरी की उम्मीद की जा सकती है। सीमा के उच्च-शक्ति अंत में, MOS-नियंत्रित थाइरिस्टर एक आशाजनक उपकरण है। सुपर जंक्शन चार्ज-बैलेंस सिद्धांत को नियोजित करके पारंपरिक MOSFET संरचना पर एक बड़ा सुधार प्राप्त करना: अनिवार्य रूप से, यह एक शक्ति MOSFET के मोटे बहाव क्षेत्र को भारी रूप से डोप करने की अनुमति देता है, जिससे ब्रेकडाउन वोल्टेज से समझौता किए बिना इलेक्ट्रॉन प्रवाह के विद्युत प्रतिरोध को कम किया जा सकता है। यह एक ऐसे क्षेत्र के साथ जुड़ा हुआ है जो समान रूप से विपरीत वाहक ध्रुवीयता (छिद्रों) के साथ डोप किया गया है; ये दो समान, लेकिन विपरीत रूप से डोप किए गए क्षेत्र प्रभावी रूप से अपने मोबाइल चार्ज को रद्द कर देते हैं और एक 'क्षीण क्षेत्र' विकसित करते हैं जो ऑफ-स्टेट के दौरान उच्च वोल्टेज का समर्थन करता है। दूसरी ओर, ऑन-स्टेट के दौरान, ड्रिफ्ट क्षेत्र का उच्च डोपिंग वाहकों के आसान प्रवाह की अनुमति देता है, जिससे ऑन-रेसिस्टेंस कम हो जाता है। इस सुपर जंक्शन सिद्धांत पर आधारित वाणिज्यिक उपकरण, Infineon (CoolMOS उत्पाद) और इंटरनेशनल रेक्टिफायर (IR) जैसी कंपनियों द्वारा विकसित किए गए हैं।

वाइड बैंड-गैप सेमीकंडक्टर्स

पावर सेमीकंडक्टर उपकरणों में बड़ी सफलता की उम्मीद एक विस्तृत बैंड-गैप सेमीकंडक्टर द्वारा सिलिकॉन के प्रतिस्थापन से की जाती है। फिलहाल, सिलिकन कार्बाइड (SiC) को सबसे आशाजनक माना जाता है। 1200 V के ब्रेकडाउन वोल्टेज वाला एक SiC Schottky डायोड व्यावसायिक रूप से उपलब्ध है, जैसा कि 1200 V JFET है। चूंकि दोनों बहुसंख्यक वाहक उपकरण हैं, वे उच्च गति से काम कर सकते हैं। उच्च वोल्टेज (20 kV तक) के लिए एक बाइपोलर डिवाइस विकसित किया जा रहा है। इसके फायदों में, सिलिकॉन कार्बाइड उच्च तापमान (400 डिग्री सेल्सियस तक) पर काम कर सकता है और इसमें सिलिकॉन की तुलना में कम थर्मल प्रतिरोध होता है, जिससे बेहतर शीतलन की अनुमति मिलती है।

यह भी देखें

नोट्स और संदर्भ

टिप्पणियाँ

  1. Bernard Finn, Exposing Electronics, CRC Press, 2000 ISBN 9058230562 pages 14-15
  2. Peter Robin Morris, A History of the World Semiconductor Industry, IET 1990 ISBN 0863412270 page 18
  3. Peter Robin Morris, A History of the World Semiconductor Industry, IET 1990 ISBN 0863412270 pages 39-41
  4. H. van Ligten, D. Navon, "Basic turn-off of GTO switches", IRE Wescon Convention Record, Part 3 on Electron Devices, pp. 49 - 52, August 1960.
  5. "Rethink Power Density with GaN". Electronic Design. 21 April 2017. Retrieved 23 July 2019.
  6. Oxner, E. S. (1988). Fet Technology and Application. CRC Press. p. 18. ISBN 9780824780500.
  7. "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
  8. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177-8, 406. ISBN 9780080508047.
  9. Jacques Arnould, Pierre Merle Dispositifs de l'électronique de puissance, Éditions Hermès, ISBN 2-86601-306-9 (in French)
  10. "Power MOSFET Basics" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019.
  11. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs — tiny solid-state switches, or metal oxide semiconductor field-effect transistors — and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently
  12. "Power Transistor Market Will Cross $13.0 Billion in 2011". IC Insights. June 21, 2011. Retrieved 15 October 2019.
  13. 13.0 13.1 13.2 Hart, D. (2010). Power Electronics. McGraw-Hill Education. pp. Chapter 1. ISBN 978-0-07-128930-6.
  14. 14.0 14.1 14.2 14.3 Mohan, N. (2003). Power Electronics Converters Applications and Design. Michigan: John Wiley and Sons. pp. Chapter 1. ISBN 978-0-471-22693-2.
  15. 15.0 15.1 15.2 Bose, B (April 1992). "Evaluation of Modern Power Semiconductor Devices and Future Trends of Converters". IEEE Transactions on Industry Applications. 28 (2): 403–413. doi:10.1109/28.126749. S2CID 14387438.
  16. "semiconductor GTO". GTO. ABB. Retrieved 21 March 2012.
  17. Robert Boylestad and Louis Nashelsky (2006). Electronic Devices. and Circuit Theory. 9th edition Prentice Hall. Upper Saddle River, New Jersey. Columbus


संदर्भ


बाहरी संबंध