मात्रा की सांद्रता
गणित में, माप की एकाग्रता (एक माध्यिका के बारे में) एक सिद्धांत है जो माप सिद्धांत, संभाव्यता और संयोजी में लागू होता है, और अन्य क्षेत्रों में जैसे बानाच अंतरिक्ष सिद्धांत के लिए इसका परिणाम होता है। अनौपचारिक रूप से, यह बताता है कि "एक यादृच्छिक चर जो कई स्वतंत्र चरों पर लिप्सचिट्ज़ विधि से निर्भर करता है (लेकिन उनमें से किसी पर बहुत अधिक नहीं) अनिवार्य रूप से स्थिर है"[1]
1970 के दशक की शुरुआत में विटाली मिलमैन द्वारा बानाच स्पेस के स्थानीय सिद्धांत पर अपने कार्यों में माप घटना की एकाग्रता को पॉल लेवी (गणितज्ञ) के काम पर वापस जाने वाले विचार का विस्तार किया गया था।[2][3] इसे मिलमैन और मिखाइल ग्रोमोव (गणितज्ञ), बर्नार्ड मौरे, गाइल्स पिसिएर, गिदोन शेख्टमैन, मिशेल तालग्रैंड, मिशेल लेडौक्स और अन्य के कार्यों में और विकसित किया गया था।
सामान्य सेटिंग
होने देना एक माप (गणित) के साथ एक मीट्रिक स्थान बनें बोरेल सेट साथ सेट पर . होने देना
कहाँ
है -विस्तार (जिसे भी कहा जाता है एक सेट के हॉसडॉर्फ_डिस्टेंस # डेफिनिशन) के संदर्भ में मेद .
कार्यक्रम अंतरिक्ष की एकाग्रता दर कहा जाता है . निम्नलिखित समकक्ष परिभाषा में कई अनुप्रयोग हैं:
जहां सर्वोच्चता सभी 1-लिप्सचिट्ज़ कार्यों पर है , और माध्यिका (या लेवी माध्य) असमानताओं द्वारा परिभाषित किया गया है
अनौपचारिक रूप से, अंतरिक्ष एक एकाग्रता घटना प्रदर्शित करता है अगर के रूप में बहुत तेजी से क्षय होता है उगता है। अधिक औपचारिक रूप से, मीट्रिक माप रिक्त स्थान का एक परिवार एक लेवी परिवार कहा जाता है अगर इसी एकाग्रता दर संतुष्ट करना
और एक सामान्य लेवी परिवार अगर
कुछ स्थिरांक के लिए . उदाहरण के लिए नीचे देखें।
गोले पर एकाग्रता
पहला उदाहरण पॉल लेवी का है। गोलाकार समपरिमितीय असमानता के अनुसार, सभी उपसमुच्चय के बीच गोले का निर्धारित गोलाकार माप के साथ , गोलाकार टोपी
उपयुक्त के लिए , सबसे छोटा है -विस्तार (किसी के लिए ).
इसे माप के सेट पर लागू करना (कहाँ
), कोई निम्नलिखित सांद्रता असमानता को कम कर सकता है:
- ,
जहाँ सार्वभौमिक स्थिरांक हैं। इसलिए एक सामान्य लेवी परिवार की उपरोक्त परिभाषा को पूरा करते हैं।
विटाली मिलमैन ने इस तथ्य को बानाच रिक्त स्थान के स्थानीय सिद्धांत में कई समस्याओं पर लागू किया, विशेष रूप से, ड्वोर्त्स्की के प्रमेय का एक नया प्रमाण देने के लिए।
भौतिकी में माप की एकाग्रता
सभी मौलिक सांख्यिकीय भौतिकी माप घटना की एकाग्रता पर आधारित है: थर्मोडायनामिक सीमा (गिब्स, 1902 [4]और अल्बर्ट आइंस्टीन, 1902-1904[5][6][7]) में समतुल्यता के बारे में मौलिक विचार ('प्रमेय') ) बिल्कुल पतली खोल एकाग्रता प्रमेय है। प्रत्येक यांत्रिक प्रणाली के लिए अपरिवर्तनीय लिउविले माप (चरण मात्रा) से सुसज्जित चरण स्थान पर विचार करें और ऊर्जा ई का संरक्षण करें। माइक्रोकैनोनिकल संपरिधान गिब्स द्वारा प्राप्त निरंतर ऊर्जा ई की सतह पर चरण अंतरिक्ष में वितरण की सीमा के रूप में एक अपरिवर्तनीय वितरण है। ऊर्जा ई और ऊर्जा ई + ΔE के साथ स्थिति की सतहों के बीच पतली परतों में निरंतर घनत्व के साथ विहित संपरिधान चरण स्थान में संभाव्यता घनत्व द्वारा दिया जाता है (चरण मात्रा के संबंध में) जहां मात्राएं F=const और T=const संभाव्यता सामान्यीकरण की शर्तों और ऊर्जा E की दी गई अपेक्षा द्वारा परिभाषित की जाती हैं।
जब कणों की संख्या बड़ी होती है, तो कैनोनिकल और माइक्रोकैनोनिकल एन्सेम्बल के लिए मैक्रोस्कोपिक चर के औसत मूल्यों के बीच का अंतर शून्य हो जाता है, और उनके उतार-चढ़ाव का स्पष्ट रूप से मूल्यांकन किया जाता है। ये परिणाम अलेक्सांद्र खींचीं (1943) द्वारा एनर्जी फंक्शन ई पर कुछ नियमितता शर्तों के तहत सख्ती से सिद्ध किए गए हैं।[8] सबसे सरल विशेष मामला जब ई वर्गों का योग है, अलेक्जेंडर खिनचिन और लेवी से पहले और गिब्स और आइंस्टीन से पहले भी विस्तार से जाना जाता था। यह आदर्श गैस में कण ऊर्जा का मैक्सवेल-बोल्ट्जमान वितरण है।
भोले-भाले भौतिक दृष्टिकोण से माइक्रोकैनोनिकल संपरिधान बहुत स्वाभाविक है: यह आइसोएनर्जेटिक हाइपरसर्फेस पर सिर्फ एक प्राकृतिक समान वितरण है। एक महत्वपूर्ण गुण के कारण विहित संपरिधान बहुत उपयोगी होता है: यदि एक प्रणाली में दो गैर-अंतःक्रियात्मक उप-प्रणालियाँ होती हैं, अर्थात यदि ऊर्जा E योग है, , कहाँ उप-प्रणालियों की अवस्थाएँ हैं, फिर उप-प्रणालियों की संतुलन अवस्थाएँ स्वतंत्र हैं, प्रणाली का संतुलन वितरण समान T के साथ उप-प्रणालियों के संतुलन वितरण का उत्पाद है। इन संपरिधान की समानता ऊष्मप्रवैगिकी की यांत्रिक नींव की आधारशिला है।
अन्य उदाहरण
- बोरेल-टीआईएस असमानता
- गॉसियन समपरिमितीय असमानता
- मैकडीर्मिड की असमानता
- तालग्रैंड की एकाग्रता असमानता
- स्पर्शोन्मुख समविभाजन संपत्ति
फुटनोट्स
- ↑ Talagrand, Michel (1996). "A New Look at Independence". Annals of Probability. 24 (1): 1–34. doi:10.1214/aop/1042644705.
- ↑ "The concentration of , ubiquitous in the probability theory and statistical mechanics, was brought to geometry (starting from Banach spaces) by Vitali Milman, following the earlier work by Paul Lévy" - M. Gromov, Spaces and questions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, Special Volume, Part I, 118–161.
- ↑ "The idea of concentration of measure (which was discovered by V.Milman) is arguably one of the great ideas of analysis in our times. While its impact on Probability is only a small part of the whole picture, this impact should not be ignored." - M. Talagrand, A new look at independence, Ann. Probab. 24 (1996), no. 1, 1–34.
- ↑ Gibbs, Josiah Willard (1902). सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत (PDF). New York, NY: Charles Scribner's Sons.
- ↑ Einstein, Albert (1902). "Kinetische Theorie des Wärmegleichgewichtes und des zweiten Hauptsatzes der Thermodynamik [Kinetic Theory of Thermal Equilibrium and of the Second Law of Thermodynamics]" (PDF). Annalen der Physik. Series 4. 9: 417–433. doi:10.1002/andp.19023141007. Retrieved 21 January 2020.
- ↑ Einstein, Albert (1904). "Eine Theorie der Grundlagen der Thermodynamik [A Theory of the Foundations of Thermodynamics]" (PDF). Annalen der Physik. Series 4. 11: 417–433. Retrieved 21 January 2020.
- ↑ Einstein, Albert (1904). "Allgemeine molekulare Theorie der Wärme [On the General Molecular Theory of Heat]" (PDF). Annalen der Physik. Series 4. 14: 354–362. doi:10.1002/andp.19043190707. Retrieved 21 January 2020.
- ↑ Khinchin, Aleksandr Y. (1949). Mathematical foundations of statistical mechanics [English translation from the Russian edition, Moscow, Leningrad, 1943]. New York, NY: Courier Corporation. Retrieved 21 January 2020.
अग्रिम पठन
- Ledoux, Michel (2001). The Concentration of Measure Phenomenon. American Mathematical Society. ISBN 0-8218-2864-9.
- Giannopoulos, A. A.; Milman, V. (2000). "Concentration property on probability spaces". Advances in Mathematics. 156: 77–106. doi:10.1006/aima.2000.1949.