युग्मित स्तवक

From Vigyanwiki
Revision as of 23:53, 18 March 2023 by alpha>Viveknayak

युग्मित स्तवक (सीसी) एक संख्यात्मक तकनीक है जिसका उपयोग कई-निकाय प्रणालियों का वर्णन करने के लिए किया जाता है। इसका सबसे साधारण उपयोग संगणनीय रसायन विज्ञान के क्षेत्र में पोस्ट-हार्ट्री-फॉक एब इनिटियो क्वांटम केमिस्ट्री विधियों में से एक है, परन्तु इसका उपयोग परमाणु भौतिकी में भी किया जाता है। युग्मित स्तवक अनिवार्य रूप से आधारभूत हार्ट्री-फॉक आणविक कक्षीय विधि लेता है और इलेक्ट्रॉनिक सहसंबंध के लिए घातीय स्तवक संचालक का उपयोग करके बहु-इलेक्ट्रॉन वेवफंक्शन का निर्माण करता है। छोटे से मध्यम आकार के अणुओं के लिए सबसे सटीक गणनाओं में से कुछ इस पद्धति का उपयोग करते हैं।[1][2][3] 1950 के दशक में फ्रिट्ज कोस्टर और हरमन कुमेल द्वारा परमाणु-भौतिकी घटना का अध्ययन करने के लिए इस पद्धति को शुरू में विकसित किया गया था, लेकिन 1966 में जिरी सिज़ेक (और बाद में जोसेफ पाल्डस के साथ मिलकर) ने परमाणुओं और अणुओं में इलेक्ट्रॉन सहसंबंध के लिए विधि का सुधार किया। यह अब क्वांटम रसायन विज्ञान में सबसे प्रचलित तरीकों में से एक है जिसमें इलेक्ट्रॉनिक सहसंबंध शामिल है।

सीसी सिद्धांत ओकटे सिनानोग्लू के कई-इलेक्ट्रॉन सिद्धांत (एमईटी) का केवल परेशान करने वाला संस्करण है, जो कई-इलेक्ट्रॉन समस्या का सटीक (और परिवर्तनशील) समाधान है, इसलिए इसे युग्मित-जोड़ी एमईटी (सीपीएमईटी) भी कहा जाता था। जे. Čížek ने एमईटी के सहसंबंध समारोह का इस्तेमाल किया और ऊर्जा अभिव्यक्ति प्राप्त करने के लिए गोल्डस्टोन-प्रकार गड़बड़ी सिद्धांत का इस्तेमाल किया, जबकि मूल एमईटी पूरी तरह से भिन्न था। सीजेक ने सबसे पहले रैखिक सीपीएमईटी विकसित किया और फिर 1966 में उसी काम में इसे पूर्ण सीपीएमईटी के लिए सामान्यीकृत किया। फिर उन्होंने उसी वर्ष सिनानोग्लू के साथ बेंजीन अणु पर इसका एक अनुप्रयोग भी किया। क्योंकि MET कम्प्यूटेशनल रूप से प्रदर्शन करना कुछ कठिन है, CC सरल है और इस प्रकार, आज की कम्प्यूटेशनल केमिस्ट्री में, CC MET का सबसे अच्छा संस्करण है और प्रयोगों की तुलना में अत्यधिक सटीक परिणाम देता है।[4][5][6]


वेवफंक्शन ansatz

युग्मित-स्तवक सिद्धांत समय-स्वतंत्र श्रोडिंगर समीकरण का सटीक समाधान प्रदान करता है

कहाँ सिस्टम का आणविक हैमिल्टनियन है, सटीक तरंग है, और E जमीनी अवस्था की सटीक ऊर्जा है। युग्मित-स्तवक सिद्धांत का उपयोग उत्तेजित राज्यों के लिए समाधान प्राप्त करने के लिए भी किया जा सकता है, उदाहरण के लिए, रैखिक प्रतिक्रिया युग्मित-स्तवक | रैखिक-प्रतिक्रिया,[7] समीकरण-की-गति युग्मित स्तवक|समीकरण-की-गति,[8] राज्य-सार्वभौमिक युग्मित स्तवक | राज्य-सार्वभौमिक बहु-संदर्भ,[9] या वैलेंस-यूनिवर्सल मल्टी-रेफरेंस कपल्ड स्तवक[10] दृष्टिकोण

युग्मित-स्तवक सिद्धांत का वेवफंक्शन एक घातीय ansatz के रूप में लिखा गया है:

कहाँ संदर्भ तरंग फ़ंक्शन है, जो आमतौर पर हार्ट्री-फॉक आणविक ऑर्बिटल्स से निर्मित एक स्लेटर निर्धारक है, हालांकि अन्य वेव फ़ंक्शंस जैसे कि कॉन्फ़िगरेशन इंटरैक्शन, बहु-विन्यास स्व-सुसंगत क्षेत्र, या ब्रुकनर ऑर्बिटल्स का भी उपयोग किया जा सकता है। स्तवक ऑपरेटर है, जिस पर कार्य करते समय , संदर्भ तरंग फ़ंक्शन से उत्साहित निर्धारकों का एक रैखिक संयोजन उत्पन्न करता है (अधिक विवरण के लिए नीचे अनुभाग देखें)।

घातीय ansatz का चुनाव उपयुक्त है क्योंकि (अन्य ansatzes के विपरीत, उदाहरण के लिए, कॉन्फ़िगरेशन इंटरैक्शन) यह समाधान की व्यापक मात्रा की गारंटी देता है। सीसी सिद्धांत में आकार स्थिरता, अन्य सिद्धांतों के विपरीत, संदर्भ तरंग फ़ंक्शन के आकार की स्थिरता पर निर्भर नहीं करती है। यह आसानी से देखा जा सकता है, उदाहरण के लिए, एफ के एकल बंधन को तोड़ने में2 सिद्धांत के सीसीएसडीटी (युग्मित स्तवक सिंगल-डबल-ट्रिपल) स्तर पर एक प्रतिबंधित हार्ट्री-फॉक (आरएचएफ) संदर्भ का उपयोग करते समय, जो आकार-संगत नहीं है, जो लगभग सटीक, पूर्ण-सीआई-गुणवत्ता, क्षमता-ऊर्जा प्रदान करता है। सतह और अणु को F में अलग नहीं करता है- और एफ+ आयन, आरएचएफ तरंग समारोह की तरह, बल्कि दो तटस्थ एफ परमाणुओं में।[11] उदाहरण के लिए, यदि कोई उपयोग करता है, उदाहरण के लिए, CCSD, या CCSD(T) सिद्धांत के स्तर, तो वे F के बंधन को तोड़ने के लिए उचित परिणाम प्रदान नहीं करेंगे।2, बाद वाले के साथ अभौतिक संभावित ऊर्जा सतहों तक पहुंचता है,[12] हालांकि यह केवल आकार स्थिरता के अलावा अन्य कारणों से है।

विधि की एक आलोचना यह है कि समानता-रूपांतरित हैमिल्टनियन (नीचे देखें) को नियोजित करने वाला पारंपरिक कार्यान्वयन परिवर्तनशील सिद्धांत नहीं है, हालांकि सिद्धांत के पहले कार्यान्वयन के बाद से द्वि-चर और अर्ध-परिवर्तनशील दृष्टिकोण विकसित किए गए हैं। जबकि तरंग फ़ंक्शन के लिए उपरोक्त ansatz में कोई प्राकृतिक ट्रंकेशन नहीं है, हालांकि, अन्य गुणों के लिए, जैसे कि ऊर्जा, अपेक्षा मूल्यों की जांच करते समय एक प्राकृतिक ट्रंकेशन होता है, जिसका आधार लिंक्ड- और कनेक्टेड-स्तवक प्रमेय में होता है, और इस प्रकार वेरिएबल कॉन्फ़िगरेशन-इंटरैक्शन दृष्टिकोण जैसे आकार विस्तार की कमी जैसे मुद्दों से ग्रस्त नहीं है।

स्तवक ऑपरेटर

फॉर्म में स्तवक ऑपरेटर लिखा होता है

कहाँ सभी एकल उत्तेजनाओं का संचालक है, सभी दोहरे उत्तेजनाओं का संचालक है, और इसी तरह। दूसरे परिमाणीकरण की औपचारिकता में इन उत्तेजना संचालकों को व्यक्त किया जाता है

और सामान्य एन-फोल्ड स्तवक ऑपरेटर के लिए

उपरोक्त सूत्रों में और क्रमशः निर्माण और विलोपन संचालकों को निरूपित करते हैं, जबकि i, j कब्जे वाले (छेद) और a, b खाली (कण) कक्षकों (राज्यों) के लिए है। उपरोक्त युग्मित-स्तवक शर्तों में सृजन और विनाश ऑपरेटरों को कैननिकल रूप में लिखा गया है, जहां प्रत्येक शब्द सामान्य क्रम में है, फर्मी वैक्यूम के संबंध में . एक-कण स्तवक ऑपरेटर और दो-कण स्तवक ऑपरेटर होने के नाते, और संदर्भ फ़ंक्शन को परिवर्तित करें यदि घातांक के बिना लागू किया जाता है (जैसे कॉन्फ़िगरेशन इंटरैक्शन में, जहां एक रैखिक उत्तेजना ऑपरेटर तरंग फ़ंक्शन पर लागू होता है) क्रमशः एकल और दोगुनी उत्साहित स्लेटर निर्धारकों के एक रैखिक संयोजन में। वेव फंक्शन में एक्सपोनेंशियल स्तवक ऑपरेटर को लागू करने के बाद, विभिन्न शक्तियों के कारण दोगुने से अधिक उत्साहित निर्धारक उत्पन्न कर सकते हैं और जो परिणामी व्यंजकों में दिखाई देते हैं (नीचे देखें)। अज्ञात गुणांकों के लिए हल करना और अनुमानित समाधान खोजने के लिए आवश्यक है .

घातीय संकारक टेलर श्रृंखला के रूप में विस्तारित किया जा सकता है, और यदि हम केवल और के स्तवक संचालक , हम लिख सकते हैं

हालांकि व्यवहार में यह श्रृंखला परिमित है क्योंकि कब्जे वाले आणविक कक्षाओं की संख्या परिमित है, जैसा कि उत्तेजनाओं की संख्या है, यह अभी भी बहुत बड़ी है, इस हद तक कि आधुनिक समय के बड़े पैमाने पर समानांतर कंप्यूटर भी अपर्याप्त हैं, एक दर्जन की समस्याओं को छोड़कर या तो इलेक्ट्रॉनों और बहुत छोटे आधार सेट, जब स्तवक ऑपरेटर के सभी योगदानों पर विचार किया जाता है और न केवल और . अक्सर, जैसा कि ऊपर किया गया था, स्तवक ऑपरेटर में केवल एकल और युगल शामिल होते हैं (नीचे सीसीएसडी देखें) क्योंकि यह कम्प्यूटेशनल रूप से सस्ती विधि प्रदान करता है जो मोलर-प्लेसेट गड़बड़ी सिद्धांत और सीआईएसडी से बेहतर प्रदर्शन करता है, लेकिन आमतौर पर बहुत सटीक नहीं होता है। सटीक परिणामों के लिए कुछ प्रकार के त्रिगुणों (अनुमानित या पूर्ण) की आवश्यकता होती है, यहां तक ​​​​कि संतुलन ज्यामिति के पास भी (फ्रैंक-कोंडन सिद्धांत | फ्रैंक-कोंडन क्षेत्र में), और विशेष रूप से जब एकल बांड तोड़ते हैं या डायरेडिकल प्रजातियों का वर्णन करते हैं (ये बाद के उदाहरण अक्सर होते हैं) जिसे बहु-संदर्भ समस्याओं के रूप में संदर्भित किया जाता है, क्योंकि एक से अधिक निर्धारकों का परिणामी तरंग फलन में महत्वपूर्ण योगदान होता है)। डबल-बॉन्ड ब्रेकिंग और रसायन विज्ञान में अधिक जटिल समस्याओं के लिए, चौगुनी उत्तेजना भी अक्सर महत्वपूर्ण हो जाती है, हालांकि आमतौर पर अधिकांश समस्याओं के लिए उनका छोटा योगदान होता है, और इस तरह, का योगदान , आदि ऑपरेटर को प्राय: छोटा होता है। इसके अलावा, यदि उच्चतम उत्तेजना स्तर ऑपरेटर एन है,

फिर एन-इलेक्ट्रॉन प्रणाली के लिए स्लेटर निर्धारक इससे अधिक उत्तेजित होते हैं () समय अभी भी युग्मित-स्तवक तरंग फ़ंक्शन में योगदान दे सकता है गैर-रैखिकता के कारण | घातीय ansatz की गैर-रैखिक प्रकृति, और इसलिए, युग्मित स्तवक को समाप्त कर दिया गया आमतौर पर अधिकतम एन उत्तेजनाओं के साथ सीआई की तुलना में अधिक सहसंबंध ऊर्जा प्राप्त करता है।

युग्मित-स्तवक समीकरण

श्रोडिंगर समीकरण को युग्मित-स्तवक तरंग फ़ंक्शन का उपयोग करके लिखा जा सकता है

जहां हल करने के लिए कुल q गुणांक (t-आयाम) हैं। q समीकरण प्राप्त करने के लिए, सबसे पहले, हम बायीं ओर के उपरोक्त श्रोडिंगर समीकरण को इससे गुणा करते हैं और फिर m-tuply उत्तेजित निर्धारकों के पूरे सेट पर प्रोजेक्ट करें, जहाँ m उच्चतम-क्रम उत्तेजना शामिल है जिसे रेफरेंस वेव फंक्शन से बनाया जा सकता है , द्वारा चिह्नित . व्यक्तिगत रूप से, अकेले उत्साहित निर्धारक हैं जहां कक्षीय i में इलेक्ट्रॉन कक्षीय a के लिए उत्साहित किया गया है; दोगुने उत्साहित निर्धारक हैं जहां कक्षीय i में इलेक्ट्रॉन a कक्षीय के लिए उत्साहित किया गया है और कक्षीय j में इलेक्ट्रॉन कक्षीय b आदि के लिए उत्साहित किया गया है। इस तरह हम युग्मित ऊर्जा-स्वतंत्र गैर-रैखिक बीजगणितीय समीकरणों का एक सेट उत्पन्न करते हैं जिनकी आवश्यकता है टी-आयाम निर्धारित करें:

बाद वाला समीकरण हल किया जाना है, और पूर्व ऊर्जा के मूल्यांकन के लिए समीकरण है। (ध्यान दें कि हमने इसका उपयोग किया है , आइडेंटिटी ऑपरेटर, और यह भी मानते हैं कि ऑर्बिटल्स ऑर्थोगोनल हैं, हालांकि यह जरूरी नहीं है कि यह सच हो, उदाहरण के लिए, वैलेंस बांड सिद्धांत ऑर्बिटल्स का उपयोग किया जा सकता है, और ऐसे मामलों में समीकरणों का अंतिम सेट शून्य के बराबर नहीं है।)

आधारभूत सीसीएसडी पद्धति को ध्यान में रखते हुए:

जिसमें समानता-रूपांतरित हैमिल्टनियन ले बीजगणित में हैडमार्ड के सूत्र का उपयोग करके स्पष्ट रूप से लिखा जा सकता है, जिसे हैडमर्ड लेम्मा भी कहा जाता है (बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला भी देखें), हालांकि ध्यान दें कि वे अलग हैं, इसमें हैडमार्ड का फॉर्मूला बीसीएच फॉर्मूला का लेम्मा है):

सबस्क्रिप्ट सी संबंधित ऑपरेटर अभिव्यक्ति के जुड़े हिस्से को निर्दिष्ट करता है।

परिणामी समानता-रूपांतरित हैमिल्टनियन गैर-हर्मिटियन है, जिसके परिणामस्वरूप एक ही स्थिति के लिए अलग-अलग आइगेनवैल्यू और ईजेनवेक्टर # बाएं और दाएं ईजेनवेक्टर (वेव फ़ंक्शंस) होते हैं (यही वह है जिसे अक्सर युग्मित-स्तवक सिद्धांत में बायोऑर्थोगोनलिटी के रूप में संदर्भित किया जाता है। समाधान, या तरंग फ़ंक्शन, हालांकि यह अन्य गैर-हर्मिटियन सिद्धांतों पर भी लागू होता है)। परिणामी समीकरण गैर-रैखिक समीकरणों का एक सेट है, जो पुनरावृत्त तरीके से हल किए जाते हैं। मानक क्वांटम-केमिस्ट्री पैकेज (GAMESS (US), NWChem, ACES (कम्प्यूटेशनल केमिस्ट्री), आदि) जैकोबी पद्धति का उपयोग करके युग्मित-स्तवक समीकरणों को हल करते हैं और पुनरावृत्त उप-स्थान (DIIS) के प्रत्यक्ष व्युत्क्रम को तेज करने के लिए टी-आयामों का एक्सट्रपलेशन करते हैं। अभिसरण।

युग्मित-स्तवक विधियों के प्रकार

पारंपरिक युग्मित-स्तवक विधियों का वर्गीकरण परिभाषा में अनुमत उत्तेजनाओं की उच्चतम संख्या पर आधारित है . युग्मित-स्तवक विधियों के संक्षिप्त रूप आमतौर पर अक्षर CC (युग्मित स्तवक के लिए) से शुरू होते हैं और उसके बाद

  1. एस - एकल उत्तेजनाओं के लिए (युग्मित-स्तवक शब्दावली में एकल के लिए छोटा),
  2. डी - डबल उत्तेजना (युगल) के लिए,
  3. टी - ट्रिपल उत्तेजना (ट्रिपल) के लिए,
  4. क्यू - चौगुनी उत्तेजना (चौगुनी) के लिए।

इस प्रकार सीसीएसडीटी में ऑपरेटर के पास फॉर्म है

गोल कोष्ठकों में शर्तें इंगित करती हैं कि इन शर्तों की गणना गड़बड़ी सिद्धांत के आधार पर की जाती है। उदाहरण के लिए, सीसीएसडी (टी) पद्धति का अर्थ है:

  1. पूर्ण उपचार एकल और युगल के साथ युग्मित स्तवक।
  2. जुड़े हुए त्रिगुणों के योगदान के अनुमान की गणना गैर-पुनरावृत्ति सिद्धांत (क्वांटम यांत्रिकी) | कई-निकाय गड़बड़ी सिद्धांत तर्कों का उपयोग करके की जाती है।

सिद्धांत का सामान्य विवरण

समीकरणों की जटिलता और संबंधित कंप्यूटर कोड, साथ ही संगणना की लागत, उत्तेजना के उच्चतम स्तर के साथ तेजी से बढ़ती है। कई अनुप्रयोगों के लिए सीसीएसडी, जबकि अपेक्षाकृत सस्ता है, छोटी प्रणालियों (लगभग 2 से 4 इलेक्ट्रॉनों) को छोड़कर पर्याप्त सटीकता प्रदान नहीं करता है, और अक्सर त्रिगुणों के अनुमानित उपचार की आवश्यकता होती है। सबसे प्रसिद्ध युग्मित-स्तवक विधि जो कनेक्टेड ट्रिपल्स का अनुमान प्रदान करती है, CCSD (T) है, जो संतुलन ज्यामिति के पास बंद-खोल अणुओं का एक अच्छा विवरण प्रदान करती है, लेकिन बॉन्ड ब्रेकिंग और डायरैडिकल जैसी अधिक जटिल स्थितियों में टूट जाती है। मानक सीसीएसडी (टी) दृष्टिकोण की विफलताओं के लिए एक और लोकप्रिय तरीका है CR-सीसी(2,3), जहां ऊर्जा में त्रिगुण योगदान की गणना सटीक समाधान और सीसीएसडी ऊर्जा के बीच के अंतर से की जाती है और यह गड़बड़ी-सिद्धांत तर्कों पर आधारित नहीं है। CCSDT और CCSDTQ जैसे अधिक जटिल युग्मित-स्तवक विधियों का उपयोग केवल छोटे अणुओं की उच्च-सटीकता गणनाओं के लिए किया जाता है। एन-इलेक्ट्रॉन प्रणाली के लिए उत्तेजना के सभी एन स्तरों को शामिल करने से बॉर्न-ओपेनहाइमर सन्निकटन के भीतर दिए गए आधार सेट (रसायन विज्ञान) के भीतर श्रोडिंगर समीकरण का सटीक समाधान मिलता है (हालांकि बीओ के बिना काम करने के लिए योजनाएं भी तैयार की गई हैं) सन्निकटन[13][14]).

मानक युग्मित-स्तवक दृष्टिकोण में एक संभावित सुधार सीसीएसडी-आर12 जैसे तरीकों के माध्यम से इंटरइलेक्ट्रॉनिक दूरी में रैखिक शब्दों को जोड़ना है। यह काटो पुच्छल स्थिति को संतुष्ट करके गतिशील इलेक्ट्रॉन सहसंबंध के उपचार में सुधार करता है और कक्षीय आधार सेट के संबंध में अभिसरण को तेज करता है। दुर्भाग्य से, R12 विधियाँ पहचान के संकल्प का आह्वान करती हैं, जिसके लिए एक अच्छा सन्निकटन होने के लिए अपेक्षाकृत बड़े आधार सेट की आवश्यकता होती है।

ऊपर वर्णित युग्मित-स्तवक विधि को एकल-संदर्भ (SR) युग्मित-स्तवक विधि के रूप में भी जाना जाता है क्योंकि घातीय ansatz में केवल एक संदर्भ फ़ंक्शन शामिल होता है . एसआर-सीसी पद्धति के मानक सामान्यीकरण बहु-संदर्भ (एमआर) दृष्टिकोण हैं: राज्य-सार्वभौमिक युग्मित स्तवक (हिल्बर्ट अंतरिक्ष युग्मित स्तवक के रूप में भी जाना जाता है), संयोजकता-सार्वभौमिक युग्मित स्तवक (या फॉक स्पेस युग्मित स्तवक) और राज्य-चयनात्मक युग्मित स्तवक (या राज्य-विशिष्ट युग्मित स्तवक)।

ऐतिहासिक खाते

कुमेल टिप्पणियाँ:[1]<ब्लॉककोट> इस तथ्य को ध्यान में रखते हुए कि सीसी पद्धति को पचास के दशक के अंत में अच्छी तरह से समझा गया था [,] यह अजीब लगता है कि 1966 तक इसके साथ कुछ भी नहीं हुआ, जैसा कि जिरी सिज़ेक ने क्वांटम रसायन विज्ञान की समस्या पर अपना पहला पेपर प्रकाशित किया था। उन्होंने फ्रिट्ज और मेरे द्वारा परमाणु भौतिकी में प्रकाशित 1957 और 1960 के पत्रों को देखा था। मुझे हमेशा यह काफी उल्लेखनीय लगा कि एक क्वांटम रसायनज्ञ परमाणु भौतिकी पत्रिका का एक अंक खोलेगा। मैंने खुद उस समय सीसी पद्धति को लगभग छोड़ दिया था क्योंकि यह ट्रैक्टेबल नहीं था और निश्चित रूप से, मैंने कभी क्वांटम केमिस्ट्री पत्रिकाओं में नहीं देखा। इसका परिणाम यह हुआ कि मुझे जीरी के काम के बारे में सत्तर के दशक की शुरुआत में पता चला, जब उन्होंने मुझे एक बड़ा पार्सल भेजा, जिसमें उनके और जो पलडस ने तब तक लिखे कई पत्रों के पुनर्मुद्रण थे। </ब्लॉककोट>

जोसेफ पाल्डस ने युग्मित-स्तवक सिद्धांत की उत्पत्ति, इसके कार्यान्वयन और इलेक्ट्रॉनिक तरंग-फ़ंक्शन निर्धारण में शोषण का अपना पहला लेख भी लिखा; उनका खाता मुख्य रूप से सिद्धांत के बजाय युग्मित-स्तवक सिद्धांत बनाने के बारे में है।[15]


अन्य सिद्धांतों से संबंध

कॉन्फ़िगरेशन इंटरैक्शन

सीjवेव फंक्शन के लिए N-इलेक्ट्रॉन सिस्टम के CI विस्तार को परिभाषित करने वाले उत्तेजना ऑपरेटर ,

स्तवक ऑपरेटरों से संबंधित हैं , क्योंकि शामिल करने की सीमा में स्तवक ऑपरेटर में CC सिद्धांत पूर्ण CI के बराबर होना चाहिए, हम निम्नलिखित संबंध प्राप्त करते हैं[16][17]

आदि। सामान्य संबंधों के लिए जे. पाल्डस, मेथड्स इन कम्प्यूटेशनल मॉलिक्यूलर फिजिक्स, वॉल्यूम देखें। नाटो एडवांस्ड स्टडी इंस्टिट्यूट सीरीज बी का 293: भौतिकी, एस. विल्सन और जी. एच. एफ. डिएर्क्सन द्वारा संपादित (प्लेनम, न्यूयॉर्क, 1992), पीपी. 99-194।

समरूपता-अनुकूलित स्तवक

समरूपता-अनुकूलित स्तवक (SAC)[18][19] दृष्टिकोण (स्पिन- और) समरूपता-अनुकूलित स्तवक ऑपरेटर को निर्धारित करता है

ऊर्जा-निर्भर समीकरणों की निम्नलिखित प्रणाली को हल करके:

कहाँ के सापेक्ष n-टुप्ली उत्साहित निर्धारक हैं (आमतौर पर, व्यावहारिक कार्यान्वयन में, वे स्पिन- और समरूपता-अनुकूलित कॉन्फ़िगरेशन स्टेट फ़ंक्शन होते हैं), और एसएसी ऑपरेटर में शामिल उत्तेजना का उच्चतम क्रम है। यदि सभी गैर-रैखिक शर्तों में शामिल हैं, तो SAC समीकरण जिरी सिज़ेक के मानक युग्मित-स्तवक समीकरणों के बराबर हो जाते हैं। यह उत्पाद में योगदान देने वाली डिस्कनेक्ट की गई शर्तों के साथ ऊर्जा-निर्भर शर्तों को रद्द करने के कारण है , जिसके परिणामस्वरूप गैर-रैखिक ऊर्जा-स्वतंत्र समीकरणों का एक ही सेट होता है। विशिष्ट रूप से, सभी अरैखिक शब्द, को छोड़कर हटा दिए जाते हैं, क्योंकि उच्च-क्रम के अरैखिक पद आमतौर पर छोटे होते हैं।[20]


परमाणु भौतिकी में प्रयोग

1980 और 1990 के दशक के दौरान परमाणु भौतिकी में, युग्मित स्तवक में क्वांटम रसायन विज्ञान की तुलना में काफी कम उपयोग देखा गया। अधिक शक्तिशाली कंप्यूटर, साथ ही साथ सिद्धांत में प्रगति (जैसे कि तीन-निकाय बल | तीन-न्यूक्लियॉन इंटरैक्शन का समावेश), तब से विधि में नए सिरे से रुचि पैदा की है, और इसे सफलतापूर्वक न्यूट्रॉन-समृद्ध और मध्यम-पर लागू किया गया है। द्रव्यमान नाभिक। युग्मित स्तवक परमाणु भौतिकी में कई प्रारंभिक विधियों (परमाणु भौतिकी) में से एक है और विशेष रूप से बंद या लगभग बंद परमाणु शेल मॉडल वाले नाभिक के लिए उपयुक्त है।[21]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Kümmel, H. G. (2002). "A biography of the coupled cluster method". In Bishop, R. F.; Brandes, T.; Gernoth, K. A.; Walet, N. R.; Xian, Y. (eds.). अनेक-निकाय सिद्धांतों में हाल की प्रगति 11वें अंतर्राष्ट्रीय सम्मेलन की कार्यवाही. Singapore: World Scientific Publishing. pp. 334–348. ISBN 978-981-02-4888-8.
  2. Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley & Sons, Ltd. pp. 191–232. ISBN 0-471-48552-7.
  3. Shavitt, Isaiah; Bartlett, Rodney J. (2009). Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press. ISBN 978-0-521-81832-2.
  4. Čížek, Jiří (1966). "परमाणु और आणविक प्रणालियों में सहसंबंध समस्या पर। क्वांटम-फील्ड सैद्धांतिक विधियों का उपयोग करके उर्सेल-प्रकार के विस्तार में वेवफंक्शन घटकों की गणना". The Journal of Chemical Physics. 45 (11): 4256–4266. Bibcode:1966JChPh..45.4256C. doi:10.1063/1.1727484.
  5. Sinanoğlu, O.; Brueckner, K. (1971). Three approaches to electron correlation in atoms. Yale Univ. Press. ISBN 0-300-01147-4. See also references therein.
  6. Si̇nanoğlu, Oktay (1962). "अनेक-परमाणुओं और अणुओं का इलेक्ट्रॉन सिद्धांत। I. गोले, इलेक्ट्रॉन जोड़े बनाम कई-इलेक्ट्रॉन सहसंबंध". The Journal of Chemical Physics. 36 (3): 706–717. Bibcode:1962JChPh..36..706S. doi:10.1063/1.1732596.
  7. Monkhorst, H. J. (1977). "युग्मित-क्लस्टर विधि के साथ गुणों की गणना". International Journal of Quantum Chemistry. 12, S11: 421–432. doi:10.1002/qua.560120850.
  8. Stanton, John F.; Bartlett, Rodney J. (1993). "गति युग्मित-क्लस्टर विधि का समीकरण। आणविक उत्तेजना ऊर्जा, संक्रमण की संभावनाएं, और उत्साहित राज्य गुणों के लिए एक व्यवस्थित बायोऑर्थोगोनल दृष्टिकोण". The Journal of Chemical Physics. 98 (9): 7029. Bibcode:1993JChPh..98.7029S. doi:10.1063/1.464746.
  9. Jeziorski, B.; Monkhorst, H. (1981). "बहुनिर्धारक संदर्भ राज्यों के लिए युग्मित-क्लस्टर विधि". Physical Review A. 24 (4): 1668. Bibcode:1981PhRvA..24.1668J. doi:10.1103/PhysRevA.24.1668.
  10. Lindgren, D.; Mukherjee, Debashis (1987). "सामान्य मॉडल स्पेस के लिए ओपन-शेल कपल्ड-क्लस्टर थ्योरी में कनेक्टिविटी मानदंड पर". Physics Reports. 151 (2): 93. Bibcode:1987PhR...151...93L. doi:10.1016/0370-1573(87)90073-1.
  11. Kowalski, K.; Piecuch, P. (2001). "A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2". Chemical Physics Letters. 344 (1–2): 165–175. Bibcode:2001CPL...344..165K. doi:10.1016/s0009-2614(01)00730-8.
  12. Ghose, K. B.; Piecuch, P.; Adamowicz, L. (1995). "Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule". Journal of Physical Chemistry. 103 (21): 9331. Bibcode:1995JChPh.103.9331G. doi:10.1063/1.469993.
  13. Monkhorst, Hendrik J. (1987). "Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method". Physical Review A. 36 (4): 1544–1561. Bibcode:1987PhRvA..36.1544M. doi:10.1103/PhysRevA.36.1544. PMID 9899035.
  14. Nakai, Hiromi; Sodeyama, Keitaro (2003). "Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO/MBPT and CC methods". The Journal of Chemical Physics. 118 (3): 1119. Bibcode:2003JChPh.118.1119N. doi:10.1063/1.1528951.
  15. Paldus, J. (2005). "The beginnings of coupled-cluster theory: an eyewitness account". In Dykstra, C. (ed.). Theory and Applications of Computational Chemistry: The First Forty Years. Elsivier B.V. p. 115.
  16. Paldus, J. (1981). कई-फर्मियन सिस्टम के लिए आरेखीय तरीके (Lecture Notes ed.). University of Nijmegen, Njimegen, The Netherlands.{{cite book}}: CS1 maint: location missing publisher (link)
  17. Bartlett, R. J.; Dykstra, C. E.; Paldus, J. (1984). Dykstra, C. E. (ed.). अणुओं की इलेक्ट्रॉनिक संरचना के लिए उन्नत सिद्धांत और कम्प्यूटेशनल दृष्टिकोण. p. 127.
  18. Nakatsuji, H.; Hirao, K. (1977). "वेवफंक्शन का क्लस्टर विस्तार। स्यूडो-ऑर्बिटल सिद्धांत स्पिन सहसंबंध पर लागू होता है". Chemical Physics Letters. 47 (3): 569. Bibcode:1977CPL....47..569N. doi:10.1016/0009-2614(77)85042-2.
  19. Nakatsuji, H.; Hirao, K. (1978). "Cluster expansion of the wavefunction. Symmetry‐adapted‐cluster expansion, its variational determination, and extension of open‐shell orbital theory". Journal of Chemical Physics. 68 (5): 2053. Bibcode:1978JChPh..68.2053N. doi:10.1063/1.436028.
  20. Ohtsuka, Y.; Piecuch, P.; Gour, J. R.; Ehara, M.; Nakatsuji, H. (2007). "रेडिकल्स की संभावित ऊर्जा सतहों की उच्च सटीकता गणना के लिए सक्रिय-अंतरिक्ष समरूपता-अनुकूलित-क्लस्टर कॉन्फ़िगरेशन-इंटरैक्शन और समीकरण-ऑफ-मोशन युग्मित-क्लस्टर विधियां". Journal of Chemical Physics. 126 (16): 164111. Bibcode:2007JChPh.126p4111O. doi:10.1063/1.2723121. hdl:2433/50108. PMID 17477593.
  21. Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J. (2014). "परमाणु नाभिक की युग्मित-क्लस्टर संगणना". Reports on Progress in Physics. 77 (9): 096302. arXiv:1312.7872. Bibcode:2014RPPh...77i6302H. doi:10.1088/0034-4885/77/9/096302. PMID 25222372. S2CID 10626343.


बाहरी संसाधन

श्रेणी:क्वांटम रसायन श्रेणी:इलेक्ट्रॉनिक संरचना के तरीके श्रेणी:हार्ट्री-फॉक के बाद के तरीके