चल चुंबक और सुचालक निर्मेय

From Vigyanwiki
Revision as of 14:58, 24 March 2023 by alpha>Indicwiki (Created page with "{{short description|Thought experiment in physics}} File:060618 conductor magnet.svg|thumb|300px|right|कंडक्टर एक चुंबकीय क्षेत्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
कंडक्टर एक चुंबकीय क्षेत्र में घूम रहा है।

चलती चुंबक और कंडक्टर समस्या एक प्रसिद्ध विचार प्रयोग है, जो 19वीं शताब्दी में शास्त्रीय विद्युत चुंबकत्व और विशेष सापेक्षता के प्रतिच्छेदन से संबंधित है। इसमें एक स्थिर वेग से गतिमान विद्युत चालक में चुंबक के संबंध में v की धारा की गणना चुंबक के जड़त्वीय फ्रेम और कंडक्टर के संदर्भ के फ्रेम में की जाती है। प्रयोग में देखने योग्य मात्रा, वर्तमान, किसी भी मामले में समान है, मूल 'सापेक्षता के सिद्धांत' के अनुसार, जो बताता है: केवल 'सापेक्ष' गति अवलोकनीय है; आराम का कोई पूर्ण मानक नहीं है।[1][better source needed] हालांकि, मैक्सवेल के समीकरणों के अनुसार, कंडक्टर में चार्ज चुंबक के फ्रेम में एक चुंबकीय बल और कंडक्टर के फ्रेम में एक विद्युत बल का अनुभव करते हैं। पर्यवेक्षक के संदर्भ के फ्रेम के आधार पर एक ही घटना के दो अलग-अलग विवरण होंगे।

यह समस्या, फ़िज़ो प्रयोग के साथ, प्रकाश का विपथन, और अधिक अप्रत्यक्ष रूप से माइकलसन-मॉर्ले प्रयोग जैसे विशेष सापेक्षता के परीक्षणों ने आइंस्टीन के सापेक्षता के सिद्धांत के विकास का आधार बनाया।[2]


परिचय

अल्बर्ट आइंस्टीन|आइंस्टीन का 1905 का पेपर जिसने दुनिया को सापेक्षता से परिचित कराया, चुंबक/कंडक्टर समस्या के विवरण के साथ शुरू होता है। [1]

It is known that Maxwell's electrodynamics – as usually understood at the present time – when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighborhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighborhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise – assuming equality of relative motion in the two cases discussed – to electric currents of the same path and intensity as those produced by the electric forces in the former case.

— A. Einstein, On the electrodynamics of moving bodies (1905)

विभिन्न रूपरेखाओं में विवरणों पर एक प्रमुख आवश्यकता यह है कि वे संगति हों। संगति एक मुद्दा है क्योंकि न्यूटन के गति के नियम उन बलों के लिए एक परिवर्तन (तथाकथित गैलीलियन आक्रमण) की भविष्यवाणी करते हैं जो आवेशों को चलाते हैं और करंट का कारण बनते हैं, जबकि मैक्सवेल के समीकरणों द्वारा व्यक्त इलेक्ट्रोडायनामिक्स भविष्यवाणी करता है कि इन बलों को जन्म देने वाले क्षेत्र अलग-अलग रूप से बदलते हैं। (लोरेंट्ज़ इनवेरिएंस के अनुसार)। माइकलसन-मॉर्ले प्रयोग में पराकाष्ठा प्रकाश के विपथन की टिप्पणियों ने लोरेंत्ज़ के व्युत्क्रम की वैधता की स्थापना की, और विशेष सापेक्षता के विकास ने न्यूटोनियन यांत्रिकी के साथ परिणामी असहमति को हल किया। विशेष आपेक्षिकता ने गतिमान संदर्भ फ़्रेमों में बलों के परिवर्तन को संशोधित किया ताकि लोरेंत्ज़ इनवेरियन के अनुरूप हो। इन परिवर्तनों के विवरण पर नीचे चर्चा की गई है।

संगति के अलावा, विवरणों को समेकित करना अच्छा होगा ताकि वे फ्रेम-स्वतंत्र प्रतीत हों। एक रूपरेखा-स्वतंत्र विवरण के लिए एक सुराग यह अवलोकन है कि एक संदर्भ फ्रेम में चुंबकीय क्षेत्र दूसरे फ्रेम में विद्युत क्षेत्र बन जाते हैं। इसी तरह, विद्युत क्षेत्रों का सोलेनोइडल क्षेत्र भाग (वह भाग जो विद्युत आवेशों से उत्पन्न नहीं होता है) एक अन्य फ्रेम में एक चुंबकीय क्षेत्र बन जाता है: अर्थात, सोलेनोइडल विद्युत क्षेत्र और चुंबकीय क्षेत्र एक ही चीज़ के पहलू हैं।[3] इसका अर्थ है कि विभिन्न विवरणों का विरोधाभास केवल सिमेंटिक गैप हो सकता है। एक विवरण जो B और E के बजाय स्केलर और वेक्टर क्षमता φ और A का उपयोग करता है, सिमेंटिकल ट्रैप से बचता है। एक लोरेंत्ज़-इनवेरिएंट चार वेक्टर α = (φ / c, 'A' ) 'E' और 'B' की जगह लेता है[4] और एक फ्रेम-स्वतंत्र विवरण प्रदान करता है (यद्यपि ई-बी-विवरण से कम आंत)।[5] विवरण का एक वैकल्पिक एकीकरण भौतिक इकाई को विद्युत चुम्बकीय क्षेत्र टेंसर के रूप में सोचना है, जैसा कि बाद में वर्णित किया गया है। इस टेंसर में घटक के रूप में ई और बी दोनों क्षेत्र शामिल हैं, और संदर्भ के सभी फ्रेमों में एक ही रूप है।

पृष्ठभूमि

विद्युत चुम्बकीय क्षेत्र प्रत्यक्ष रूप से देखने योग्य नहीं हैं। शास्त्रीय भौतिकी के विद्युत चुम्बकीय क्षेत्रों के अस्तित्व का अनुमान आवेशित कणों की गति से लगाया जा सकता है, जिनके प्रक्षेपवक्र देखे जा सकते हैं। विद्युत चुम्बकीय क्षेत्र शास्त्रीय आवेशित कणों की प्रेक्षित गतियों की व्याख्या करते हैं।

भौतिकी में एक मजबूत आवश्यकता यह है कि कण की गति के सभी पर्यवेक्षक कण के प्रक्षेपवक्र पर सहमत हों। उदाहरण के लिए, यदि एक पर्यवेक्षक यह नोट करता है कि एक कण बुल्सआई के केंद्र से टकराता है, तो सभी पर्यवेक्षकों को एक ही निष्कर्ष पर पहुंचना चाहिए। यह आवश्यकता विद्युत चुम्बकीय क्षेत्रों की प्रकृति और उनके एक संदर्भ फ्रेम से दूसरे में परिवर्तन पर बाधा डालती है। यह उस तरीके पर भी प्रतिबंध लगाता है जिससे क्षेत्र त्वरण को प्रभावित करते हैं और इसलिए आवेशित कणों के प्रक्षेपवक्र।

शायद सबसे सरल उदाहरण, और एक जिसे आइंस्टीन ने अपने 1905 के पेपर में विशेष सापेक्षता का परिचय देते हुए संदर्भित किया था, वह एक चुंबक के क्षेत्र में गतिमान कंडक्टर की समस्या है। चुंबक के फ्रेम में, कंडक्टर एक चुंबकीय बल का अनुभव करता है। चुंबक के सापेक्ष गतिमान चालक के फ्रेम में, चालक विद्युत क्षेत्र के कारण एक बल का अनुभव करता है। कंडक्टर फ्रेम में चुंबक फ्रेम में चुंबकीय क्षेत्र और विद्युत क्षेत्र कंडक्टर में लगातार परिणाम उत्पन्न करना चाहिए। 1905 में आइंस्टीन के समय, मैक्सवेल के समीकरणों द्वारा दर्शाए गए क्षेत्र समीकरण उचित रूप से सुसंगत थे। न्यूटन के गति के नियम को, हालांकि, सुसंगत कण प्रक्षेपवक्र प्रदान करने के लिए संशोधित किया जाना था।[6]


क्षेत्रों का परिवर्तन, गैलीलियन परिवर्तनों को मानते हुए

यह मानते हुए कि चुंबक फ्रेम और कंडक्टर फ्रेम गैलीलियन परिवर्तन से संबंधित हैं, दोनों फ्रेमों में क्षेत्रों और बलों की गणना करना सीधा है। यह प्रदर्शित करेगा कि प्रेरित धारा वास्तव में दोनों फ़्रेमों में समान है। उप-उत्पाद के रूप में, यह तर्क एक फ्रेम में विद्युत और चुंबकीय क्षेत्रों के लिए दूसरे फ्रेम में क्षेत्रों के संदर्भ में एक सामान्य सूत्र भी देगा।[7] वास्तव में, फ्रेम गैलीलियन परिवर्तन से संबंधित नहीं हैं, बल्कि लोरेंत्ज़ परिवर्तन से संबंधित हैं। फिर भी, यह प्रकाश की गति से बहुत कम वेग पर एक बहुत अच्छा सन्निकटन के लिए एक गैलिलियन परिवर्तन होगा।

अप्रकाशित मात्राएँ चुंबक के बाकी फ्रेम के अनुरूप होती हैं, जबकि प्राइमेड मात्राएँ कंडक्टर के बाकी फ्रेम के अनुरूप होती हैं। मान लीजिए 'v' कंडक्टर का वेग है, जैसा कि चुंबक फ्रेम से देखा गया है।

चुंबक फ्रेम

चुंबक के बाकी फ्रेम में, चुंबकीय क्षेत्र कुछ निश्चित क्षेत्र बी (आर) है, जो चुंबक की संरचना और आकार से निर्धारित होता है। विद्युत क्षेत्र शून्य है।

सामान्य तौर पर, विद्युत क्षेत्र और चुंबकीय क्षेत्र द्वारा चालक में आवेश q के एक कण पर लगाया गया बल (एसआई इकाइयों) द्वारा दिया जाता है:

कहाँ कण पर आवेश है, कण वेग है और F लोरेंत्ज़ बल है। यहाँ, हालाँकि, विद्युत क्षेत्र शून्य है, इसलिए कण पर बल है


कंडक्टर फ्रेम

कंडक्टर फ्रेम में, चुंबक फ्रेम में चुंबकीय क्षेत्र बी से संबंधित एक समय-भिन्न चुंबकीय क्षेत्र बी 'है:[8]

कहाँ

इस फ्रेम में, एक विद्युत क्षेत्र है, और इसका कर्ल फैराडे के आगमन के नियम द्वारा दिया गया है#मैक्सवेल-फैराडे समीकरण|मैक्सवेल-फैराडे समीकरण:

इसका चमत्कारी परिणाम होता है:

  Explanation of this equation for .

इसे समझने योग्य बनाने के लिए: यदि एक कंडक्टर बी-फ़ील्ड के माध्यम से एक ढाल के साथ चलता है , स्थिर वेग के साथ z- अक्ष के साथ , यह इस प्रकार है कि कंडक्टर के फ्रेम में . यह देखा जा सकता है कि यह समीकरण संगत है , निर्धारित करके और इस अभिव्यक्ति से और इसका उपयोग करते समय इसे पहली अभिव्यक्ति में प्रतिस्थापित करना . यहां तक ​​कि इनफिनिटिमल छोटे ग्रेडियेंट की सीमा में भी ये संबंध कायम हैं, और इसलिए लोरेंत्ज़ बल समीकरण भी मान्य है यदि कंडक्टर फ्रेम में चुंबकीय क्षेत्र समय में भिन्न नहीं है। सापेक्षतावादी वेगों पर एक सुधार कारक की आवश्यकता होती है, नीचे देखें और शास्त्रीय विद्युत चुंबकत्व और विशेष सापेक्षता और लोरेंत्ज़ परिवर्तन।

कंडक्टर में एक चार्ज क्यू कंडक्टर फ्रेम में आराम से होगा। इसलिए, लोरेंत्ज़ बल के चुंबकीय बल शब्द का कोई प्रभाव नहीं पड़ता है, और आवेश पर बल द्वारा दिया जाता है

यह दर्शाता है कि बल दोनों फ़्रेमों में समान है (जैसा कि अपेक्षित होगा), और इसलिए इस बल के किसी भी अवलोकनीय परिणाम, जैसे कि प्रेरित धारा, दोनों फ़्रेमों में भी समान होंगे। यह इस तथ्य के बावजूद है कि बल को चालक फ्रेम में एक विद्युत बल के रूप में देखा जाता है, लेकिन चुंबक के फ्रेम में एक चुंबकीय बल के रूप में देखा जाता है।

खेतों के लिए गैलीलियन परिवर्तन सूत्र

इसी तरह का तर्क दिया जा सकता है अगर चुंबक के फ्रेम में भी विद्युत क्षेत्र हों। (एम्पीयर-मैक्सवेल समीकरण भी चलन में आता है, यह समझाते हुए कि कैसे, कंडक्टर के फ्रेम में, यह गतिमान विद्युत क्षेत्र चुंबकीय क्षेत्र में योगदान देगा।) अंतिम परिणाम यह है कि, सामान्य तौर पर,

c मुक्त स्थान में प्रकाश की गति के साथ।

इन परिवर्तन नियमों को पूर्ण मैक्सवेल के समीकरणों में प्लग करके, यह देखा जा सकता है कि यदि मैक्सवेल के समीकरण एक फ्रेम में सत्य हैं, तो वे दूसरे फ्रेम में लगभग सत्य हैं, लेकिन लोरेंत्ज़ परिवर्तन द्वारा प्रो में गलत पद शामिल हैं, और क्षेत्र परिवर्तन समीकरण भी नीचे दिए गए भावों के अनुसार बदला जाना चाहिए।

मैक्सवेल के समीकरणों द्वारा भविष्यवाणी के अनुसार क्षेत्रों का परिवर्तन

गति v पर चलने वाले एक फ्रेम में, गतिमान फ्रेम में ई-फील्ड जब स्थिर चुंबक फ्रेम में कोई ई-फील्ड नहीं होता है सापेक्षतावादी विद्युत चुंबकत्व # अधिक कठोर विश्लेषण | मैक्सवेल के समीकरण इस प्रकार बदलते हैं:[9]

कहाँ

लोरेंत्ज़ कारक कहा जाता है और सी मुक्त स्थान में प्रकाश की गति है। यह परिणाम मैक्सवेल के समीकरणों के लिए सभी जड़त्वीय फ्रेमों में पर्यवेक्षकों के एक ही रूप में पहुंचने की आवश्यकता का परिणाम है। विशेष रूप से, सभी पर्यवेक्षकों को प्रकाश की समान गति c देखनी चाहिए। यह आवश्यकता अंतरिक्ष और समय के लिए लोरेंत्ज़ परिवर्तन की ओर ले जाती है। एक लोरेन्ट्ज़ रूपांतरण मानते हुए, मैक्सवेल के समीकरणों का व्युत्क्रम इस उदाहरण के लिए क्षेत्रों के उपरोक्त परिवर्तन की ओर जाता है।

नतीजतन, चार्ज पर बल है

यह व्यंजक गैर-सापेक्षवादी न्यूटन के गति के नियम से प्राप्त व्यंजक लोरेंत्ज़ गुणक के गुणक से भिन्न है|. विशेष सापेक्षता अंतरिक्ष और समय को इस तरह संशोधित करती है कि बल और क्षेत्र लगातार रूपांतरित होते हैं।

मैक्सवेल के समीकरणों के साथ संगति के लिए गतिकी में संशोधन

चित्र 1: दो जड़त्वीय फ़्रेमों से देखी गई कंडक्टिंग बार; एक फ्रेम में बार वेग v के साथ चलता है; प्राइमेड फ्रेम में बार स्थिर होता है क्योंकि प्राइमेड फ्रेम बार के समान वेग से चलता है। बी-फ़ील्ड x-दिशा में स्थिति के साथ बदलता रहता है

लोरेंत्ज़ बल का दोनों फ़्रेमों में समान रूप है, हालाँकि क्षेत्र भिन्न हैं, अर्थात्:

चित्रा 1 देखें। सरल बनाने के लिए, चुंबकीय क्षेत्र को जेड-दिशा में इंगित करें और स्थान एक्स के साथ भिन्न करें, और कंडक्टर को सकारात्मक एक्स-दिशा में वेग वी के साथ अनुवाद करने दें। नतीजतन, चुंबक फ्रेम में जहां कंडक्टर चल रहा है, लोरेंत्ज़ बल ऋणात्मक y-दिशा में इंगित करता है, वेग और B-क्षेत्र दोनों के लंबवत। किसी आवेश पर बल, यहाँ केवल B-क्षेत्र के कारण है

जबकि कंडक्टर फ्रेम में जहां चुंबक चल रहा है, बल नकारात्मक वाई-दिशा में भी है, और अब केवल 'ई'-फ़ील्ड के मान के कारण:

दो बल लोरेंत्ज़ कारक γ से भिन्न होते हैं। एक सापेक्षवादी सिद्धांत में इस अंतर की अपेक्षा की जाती है, हालांकि, फ्रेम के बीच अंतरिक्ष-समय में परिवर्तन के कारण, जैसा कि आगे चर्चा की गई है।

सापेक्षता मैक्सवेल के समीकरणों के निश्चरता द्वारा सुझाए गए स्थान-समय के लोरेंत्ज़ परिवर्तन को लेती है और इसे गतिकी (भौतिकी) पर भी लागू करती है (न्यूटन के गति के नियमों का संशोधन)। इस उदाहरण में, लोरेंत्ज़ परिवर्तन केवल एक्स-दिशा को प्रभावित करता है (दो फ़्रेमों की सापेक्ष गति एक्स-दिशा के साथ है)। समय और स्थान को जोड़ने वाले संबंध हैं (प्राइम्स मूविंग कंडक्टर फ्रेम को दर्शाते हैं):[10]

इन परिवर्तनों से विशेष सापेक्षता # बल के y-घटक में परिवर्तन होता है:

अर्थात्, लोरेंत्ज़ के आक्रमण के भीतर, गैलीलियन आक्रमण के विपरीत, संदर्भ के सभी फ़्रेमों में बल नहीं समान है। लेकिन, लोरेंत्ज़ बल कानून पर आधारित पहले के विश्लेषण से:

जो पूरी तरह से सहमत है। तो आवेश पर बल दोनों फ्रेम में समान नहीं है, लेकिन यह सापेक्षता के अनुसार अपेक्षित रूप से रूपांतरित होता है।

यह भी देखें

संदर्भ और नोट्स

  1. The Laws of Physics are the same in all inertial frames.
  2. Norton, John D., John D. (2004), "Einstein's Investigations of Galilean Covariant Electrodynamics prior to 1905", Archive for History of Exact Sciences, 59 (1): 45–105, Bibcode:2004AHES...59...45N, doi:10.1007/s00407-004-0085-6, S2CID 17459755
  3. There are two constituents of electric field: a solenoidal field (or incompressible field) and a conservative field (or irrotational field). The first is transformable to a magnetic field by changing the frame of reference, the second originates in electric charge, and transforms always into an electric field, albeit of different magnitude.
  4. The symbol c represents the speed of light in free space.
  5. However, φ and A are not completely disentangled, so the two types of E-field are not separated completely. See Jackson From Lorenz to Coulomb and other explicit gauge transformations The author stresses that Lorenz is not a typo.
  6. Roger Penrose (Martin Gardner: foreword) (1999). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press. p. 248. ISBN 0-19-286198-0.
  7. See Jackson, Classical Electrodynamics, Section 5.15.
  8. This expression can be thought of as an assumption based on our experience with magnets, that their fields are independent of their velocity. At relativistic velocities, or in the presence of an electric field in the magnet frame, this equation would not be correct.
  9. Tai L. Chow (2006). Electromagnetic theory. Sudbury MA: Jones and Bartlett. Chapter 10.21, p. 402–403 ff. ISBN 0-7637-3827-1.
  10. Tai L. Chow (2006). Electromagnetic theory. Sudbury MA: Jones and Bartlett. Chapter 10.5, p. 368 ff. ISBN 0-7637-3827-1.


अग्रिम पठन

  • Misner, Charles; Thorne, Kip S. & Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN 0-7167-0344-0.
  • Landau, L. D. & Lifshitz, E. M. (1975). Classical Theory of Fields (Fourth Revised English ed.). Oxford: Pergamon. ISBN 0-08-018176-7.
  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
  • C Møller (1976). The Theory of Relativity (Second ed.). Oxford UK: Oxford University Press. ISBN 0-19-560539-X. OCLC 220221617.


बाहरी संबंध