केंद्रीय त्रिभुज

From Vigyanwiki
Revision as of 15:47, 11 April 2023 by alpha>Vikas

ज्यामिति में, केंद्रीय त्रिभुज उस त्रिभुज को संदर्भित करता है जिसके तल में एक त्रिभुज निहित होता है, जिसके संकेत त्रिकोण के संबंध में त्रिरेखीय निर्देशांक द्वारा एक निश्चित चक्रीय तरीके से समरूपता की समान डिग्री वाले दो फलनों के संकेत में अभिव्यक्त होते हैं। दो फलनों में से कम से कम एक त्रिभुज केंद्र फलन होना चाहिए। केंद्रीय त्रिभुज के लिए बाह्य त्रिभुज एक उदाहरण है। केंद्रीय त्रिकोणों को दो फलनों के गुणों के आधार पर तीन प्रकारों में वर्गीकृत किया गया है।

परिभाषा

त्रिकोण केंद्र फलन

एक त्रिभुज केंद्र एक वास्तविक मूल्यवान फलन F(u,v,w) है जिसमें तीन वास्तविक चर u, v, w निम्नलिखित गुण हैं:

*सजातीय फलन: F (tu, tv, tw) = tn F(u,v,w) कुछ स्थिर n के लिए और सभी t > 0 के लिए, निरंतर n फलन F(u,v,w) की एकरूपता की डिग्री है।
  • समरूपता गुण: F(u,v,w) = F(u,w,v)

टाइप 1 के केंद्रीय त्रिकोण

अनुमानित है कि f(u,v,w) और g(u,v,w) दो त्रिभुज केंद्र फलन का पालन करते हैं, न कि दोनों समान रूप से शून्य फलन करते हैं, समरूपता की समान डिग्री होती है। मान लीजिए a, b, c संकेत त्रिभुज ABC की भुजाओं की लंबाई हैं। An (f,g)-प्रकार 1 का केंद्रीय त्रिभुज एक त्रिभुज A'B'C' है जिसके शीर्षों के त्रिरेखीय निर्देशांक निम्नलिखित रूप में हैं:[1][2]

A' = f(a,b,c) : g(b,c,a) : g(c,a,b)
B' = g(a,b,c) : f(b,c,a) : g(c,a,b)
C' = g(a,b,c) : g(b,c,a) : f(c,a,b)

टाइप 2 के केंद्रीय त्रिकोण

अनुमानित है कि f(u,v,w) एक त्रिभुज केंद्र फलन हो और g(u,v,w) समरूपता विशेषता को संतुष्ट करने वाला एक फलन हो और f(u,v,w) के समान द्विसमता गुण समानता की डिग्री हो लेकिन संतोषजनक नहीं। प्रकार 2 का एक (f,g)-केंद्रीय त्रिभुज एक त्रिभुज A'B'C' है जिसके शीर्षों के त्रिरेखीय निर्देशांक निम्नलिखित रूप में हैं:[1]

A' = f(a,b,c) : g(b,c,a) : g(c,b,a)
B' = g(a,c,b) : f(b,c,a) : g(c,a,b)
C' = g(a,b,c) : g(b,a,c) : f(c,a,b)

टाइप 3 के केंद्रीय त्रिकोण

अनुमानित है कि g(u,v,w) एक त्रिकोण केंद्र फलन हो। प्रकार 3 का एक G-केंद्रीय त्रिभुज एक त्रिभुज A'B'C' है जिसके शीर्षों के त्रिरेखीय निर्देशांक निम्नलिखित रूप में हैं:[1]

A' = 0 : g(b,c,a) : - g(c,b,a)
B' = - g(a,c,b) : 0 : g(c,a,b)
C' = g(a,b,c) : - g(b,a,c) : 0

यह इस अर्थ में एक पतित त्रिभुज है कि बिंदु A' B' C' संरेख हैं।

विशेष परिस्थिति

यदि f = g, टाइप 1 का (f,g)-केंद्रीय त्रिभुज त्रिकोण केंद्र A' में पतित हो जाता है। टाइप 1 और टाइप 2 दोनों के सभी केंद्रीय त्रिकोण एक समबाहु त्रिभुज के सापेक्ष एक बिंदु पर पतित हो जाते हैं।

उदाहरण

टाइप 1

  • त्रिभुज ABC का बाह्य त्रिभुज प्रकार 1 का एक केंद्रीय त्रिभुज है। इसे f(u,v,w) = -1 और g(u,v,w) = 1 लेकर प्राप्त किया जाता है।
  • मान लें कि X त्रिभुज केंद्र फलन g(a,b,c) द्वारा परिभाषित त्रिभुज केंद्र है। तब X का सीवियन त्रिभुज प्रकार 1 का एक (0, g)-केंद्रीय त्रिभुज है।[3]
  • मान लें कि X त्रिकोण केंद्र फलन f(a,b,c) द्वारा परिभाषित त्रिभुज केंद्र है। तब X का एंटीसेवियन त्रिभुज प्रकार 1 का एक (- f, f)-केंद्रीय त्रिभुज है।[4]
  • (f, g)-केंद्रीय त्रिभुज f(a,b,c) = a(2S+SA) के साथ और g (a, b, c) = aSA, जहाँ S, त्रिभुज ABC और SA के क्षेत्रफल का दुगुना है = (1/2) (B2 + C2 - A2), लुकास केंद्रीय त्रिभुज है।[5]


टाइप 2

  • मान लें कि X एक त्रिभुज केंद्र है। X का पैडल त्रिभुज और पेडल त्रिभुज टाइप 2 के केंद्रीय त्रिभुज हैं।[6]
  • Yff सर्वांगसमता का केंद्र, Yff केंद्रीय त्रिभुज[7]


संकेत

  1. 1.0 1.1 1.2 Weisstein, Eric W. "मध्य त्रिकोण". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 17 December 2021.
  2. Kimberling, C (1998). "त्रिकोण केंद्र और केंद्रीय त्रिकोण". Congressus Numerantium. A Conference Journal on Numerical Themes. 129. 129.
  3. Weisstein, Eric W. "केवियन त्रिकोण". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  4. Weisstein, Eric W. "एंटीसेवियन त्रिकोण". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  5. Weisstein, Eric W. "लुकास सेंट्रल त्रिकोण". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  6. Weisstein, Eric W. "पेडल त्रिकोण". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  7. Weisstein, Eric W. "Yff केंद्रीय त्रिभुज". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.