ब्लॉक डिजाइन

From Vigyanwiki
Revision as of 10:32, 21 March 2023 by alpha>Indicwiki (Created page with "{{about|block designs with fixed block size (uniform)|block designs with variable block sizes|Combinatorial design|experimental designs in statisti...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

साहचर्य गणित में, एक ब्लॉक डिज़ाइन एक घटना संरचना है जिसमें सेट के एक परिवार के साथ मिलकर एक सेट होता है जिसे 'ब्लॉक' के रूप में जाना जाता है, इस तरह चुना जाता है कि तत्वों की आवृत्ति कुछ शर्तों को पूरा करती है जिससे ब्लॉक का संग्रह समरूपता (संतुलन) प्रदर्शित करता है। ब्लॉक डिज़ाइनों में प्रयोगात्मक डिज़ाइन, परिमित ज्यामिति, भौतिक रसायन शास्त्र, सॉफ़्टवेयर परीक्षण, क्रिप्टोग्राफी और बीजगणितीय ज्यामिति सहित कई क्षेत्रों में अनुप्रयोग हैं।

आगे विशिष्टताओं के बिना 'ब्लॉक डिज़ाइन' शब्द आमतौर पर एक संतुलित अपूर्ण ब्लॉक डिज़ाइन (BIBD) को संदर्भित करता है, विशेष रूप से (और समानार्थक रूप से) एक 2-डिज़ाइन, जो डिज़ाइन में इसके अनुप्रयोग के कारण ऐतिहासिक रूप से सबसे गहन अध्ययन प्रकार रहा है। प्रयोगों का।[1][2] इसके सामान्यीकरण को टी-डिज़ाइन के रूप में जाना जाता है।

सिंहावलोकन

एक डिज़ाइन को संतुलित (टी तक) कहा जाता है यदि मूल सेट के सभी टी-उपसमुच्चय समान रूप से कई (यानी, λ) ब्लॉकों में होते हैं। जब टी निर्दिष्ट नहीं होता है, तो इसे आमतौर पर 2 माना जा सकता है, जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी समान संख्या में ब्लॉक में पाई जाती है और डिज़ाइन जोड़ीदार संतुलित है। टी = 1 के लिए, प्रत्येक तत्व समान संख्या में ब्लॉक (प्रतिकृति संख्या, निरूपित आर) में होता है और डिजाइन को नियमित कहा जाता है। टी तक संतुलित कोई भी डिज़ाइन टी के सभी निचले मूल्यों (हालांकि विभिन्न λ-मानों के साथ) में भी संतुलित है, इसलिए उदाहरण के लिए एक जोड़ीदार संतुलित (टी = 2) डिज़ाइन भी नियमित (टी = 1) है। जब संतुलन की आवश्यकता विफल हो जाती है, तब भी एक डिजाइन आंशिक रूप से संतुलित हो सकता है यदि टी-उपसमुच्चय को n वर्गों में विभाजित किया जा सकता है, प्रत्येक का अपना (अलग) λ-मूल्य है। टी = 2 के लिए इन्हें 'पीबीआईबीडी (एन) डिजाइन' के रूप में जाना जाता है, जिनकी कक्षाएं एक संघ योजना बनाती हैं।

डिज़ाइन को आमतौर पर अधूरा कहा जाता है (या माना जाता है), जिसका अर्थ है कि किसी भी ब्लॉक में सेट के सभी तत्व नहीं होते हैं, इस प्रकार एक तुच्छ डिज़ाइन को खारिज कर दिया जाता है।

एक ब्लॉक डिज़ाइन जिसमें सभी ब्लॉकों का आकार समान होता है (आमतौर पर k को निरूपित किया जाता है) को समान या उचित कहा जाता है। इस आलेख में चर्चा की गई डिज़ाइन सभी समान हैं। ब्लॉक डिजाइन जो आवश्यक रूप से एक समान नहीं हैं, का भी अध्ययन किया गया है; टी = 2 के लिए वे साहित्य में सामान्य नाम कॉम्बिनेटरियल डिज़ाइन # जोड़ीदार संतुलित डिज़ाइन (पीबीडी) के तहत जाने जाते हैं।

ब्लॉक डिजाइन में बार-बार ब्लॉक हो भी सकते हैं और नहीं भी। दोहराए गए ब्लॉक के बिना डिज़ाइन सरल कहलाते हैं,[3] इस मामले में ब्लॉक का परिवार multiset के बजाय एक सेट (गणित) है।

आँकड़ों में, एक ब्लॉक डिज़ाइन की अवधारणा को गैर-बाइनरी ब्लॉक डिज़ाइनों तक बढ़ाया जा सकता है, जिसमें ब्लॉक में एक तत्व की कई प्रतियां हो सकती हैं (ब्लॉकिंग (आँकड़े) देखें)। वहां, एक डिजाइन जिसमें प्रत्येक तत्व एक ही कुल संख्या में होता है, उसे समकक्ष कहा जाता है, जिसका मतलब केवल एक नियमित डिजाइन होता है, जब डिजाइन भी द्विआधारी होता है। एक गैर-बाइनरी डिज़ाइन की घटना मैट्रिक्स प्रत्येक ब्लॉक में प्रत्येक तत्व के दोहराए जाने की संख्या को सूचीबद्ध करती है।

नियमित वर्दी डिजाइन (कॉन्फ़िगरेशन)

सबसे सरल प्रकार की संतुलित डिज़ाइन (t = 1) को 'सामरिक विन्यास' या '1-डिज़ाइन' के रूप में जाना जाता है। ज्यामिति में संबंधित घटना संरचना को 'विन्यास' के रूप में जाना जाता है, विन्यास (ज्यामिति) देखें। ऐसा डिज़ाइन एक समान और नियमित है: प्रत्येक ब्लॉक में k तत्व होते हैं और प्रत्येक तत्व r ब्लॉक में समाहित होता है। सेट तत्वों की संख्या v और ब्लॉकों की संख्या b से संबंधित हैं , जो तत्वों की घटनाओं की कुल संख्या है।

निरंतर पंक्ति और स्तंभ योगों वाला प्रत्येक बाइनरी मैट्रिक्स एक नियमित वर्दी ब्लॉक डिज़ाइन का घटना मैट्रिक्स है। इसके अलावा, प्रत्येक विन्यास में एक संबंधित बिरेगुलर ग्राफ द्विपक्षीय ग्राफ ग्राफ (असतत गणित) होता है जिसे इसकी घटना या लेवी ग्राफ के रूप में जाना जाता है।

जोड़ीदार संतुलित वर्दी डिजाइन (2-डिजाइन या बीआईबीडी)

एक परिमित सेट X (बिंदु कहे जाने वाले तत्वों का) और पूर्णांक k, r, λ ≥ 1 को देखते हुए, हम 2-डिज़ाइन (या BIBD, संतुलित अपूर्ण ब्लॉक डिज़ाइन के लिए खड़े) B को परिभाषित करते हैं, जो कि X के k-तत्व सबसेट का एक परिवार है। , ब्लॉक कहा जाता है, जैसे कि X में कोई भी x r ब्लॉक में समाहित है, और X में अलग-अलग बिंदु x और y की कोई भी जोड़ी λ ब्लॉक में समाहित है। यहां, शर्त यह है कि एक्स में कोई भी एक्स आर ब्लॉक में निहित है, जैसा कि नीचे दिखाया गया है, बेमानी है।

यहाँ v (X के तत्वों की संख्या, जिसे बिंदु कहा जाता है), b (ब्लॉक की संख्या), k, r, और λ डिज़ाइन के पैरामीटर हैं। (पतित उदाहरणों से बचने के लिए, यह भी माना जाता है कि v > k, ताकि किसी भी ब्लॉक में सेट के सभी तत्व शामिल न हों। इन डिज़ाइनों के नाम में अपूर्णता का यही अर्थ है।) एक तालिका में:

v points, number of elements of X
b number of blocks
r number of blocks containing a given point
k number of points in a block
λ number of blocks containing any 2 (or more generally t) distinct points

डिज़ाइन को a (v, k, λ)-डिज़ाइन या a (v, b, r, k, λ)-डिज़ाइन कहा जाता है। पैरामीटर सभी स्वतंत्र नहीं हैं; v, k, और λ b और r निर्धारित करते हैं, और v, k, और λ के सभी संयोजन संभव नहीं हैं। इन मापदंडों को जोड़ने वाले दो बुनियादी समीकरण हैं

जोड़े (बी, पी) की संख्या की गणना करके प्राप्त किया गया जहां बी एक ब्लॉक है और पी उस ब्लॉक में एक बिंदु है, और

एक निश्चित x के लिए गिनने से प्राप्त ट्रिपल (x, y, B) जहां x और y अलग-अलग बिंदु हैं और B एक ऐसा ब्लॉक है जिसमें ये दोनों शामिल हैं। प्रत्येक x के लिए यह समीकरण यह भी साबित करता है कि r स्थिर है (x से स्वतंत्र) भले ही इसे स्पष्ट रूप से ग्रहण न किया गया हो, इस प्रकार यह साबित होता है कि x में कोई भी x r ब्लॉक में समाहित है, यह निरर्थक है और r की गणना अन्य मापदंडों से की जा सकती है।

ये शर्तें पर्याप्त नहीं हैं, उदाहरण के लिए, (43,7,1)-डिज़ाइन मौजूद नहीं है।[4] 2-डिज़ाइन का क्रम n = r − λ के रूप में परिभाषित किया गया है। 2-डिज़ाइन का 'पूरक' बिंदु सेट X में प्रत्येक ब्लॉक को इसके पूरक के साथ बदलकर प्राप्त किया जाता है। यह 2-डिज़ाइन भी है और इसके पैरामीटर v′ = v, b′ = b, r′ = b − r हैं , k′ = v − k, λ′ = λ + b − 2r। एक 2-डिज़ाइन और उसके पूरक का एक ही क्रम है।

एक मौलिक प्रमेय, फिशर की असमानता, जिसका नाम सांख्यिकीविद् रोनाल्ड फिशर के नाम पर रखा गया है, वह किसी भी 2-डिज़ाइन में b ≥ v है।

उदाहरण

अद्वितीय (6,3,2)-डिजाइन (v = 6, k = 3, λ = 2) में 10 ब्लॉक (b = 10) हैं और प्रत्येक तत्व को 5 बार (r = 5) दोहराया जाता है।[5] प्रतीकों 0 − 5 का उपयोग करते हुए, ब्लॉक निम्नलिखित त्रिगुण हैं:

012    013    024    035    045    125    134    145    234    235।

और संबंधित घटना मैट्रिक्स (एक v × b बाइनरी मैट्रिक्स निरंतर पंक्ति योग r और निरंतर स्तंभ योग k के साथ) है:

चार गैर-समरूपी (8,4,3)-डिज़ाइनों में से एक में 14 ब्लॉक हैं जिनमें प्रत्येक तत्व को 7 बार दोहराया गया है। प्रतीकों 0 − 7 का उपयोग करते हुए ब्लॉक निम्नलिखित 4-ट्यूपल हैं:[5]: 0123    0124    0156    0257    0345    0367    0467    1267    1346    1357    1457    2347    2356    2456।

अद्वितीय (7,3,1)-डिजाइन सममित है और इसमें 7 ब्लॉक हैं जिनमें प्रत्येक तत्व को 3 बार दोहराया गया है। प्रतीकों 0 − 6 का उपयोग करते हुए, ब्लॉक निम्नलिखित त्रिक हैं:[5]: 013    026    045    124    156    235    346। यह डिज़ाइन फानो विमान के साथ जुड़ा हुआ है, डिज़ाइन फ़ानो प्लेन के तत्वों और ब्लॉकों के साथ # प्लेन के पॉइंट्स और लाइन्स के लिए ब्लॉक डिज़ाइन थ्योरी। इसके संबंधित घटना मैट्रिक्स भी सममित हो सकते हैं, यदि लेबल या ब्लॉक को सही तरीके से क्रमबद्ध किया गया हो:


सममित 2-डिज़ाइन (बाइंड)

फिशर की असमानता में समानता का मामला, अर्थात, समान संख्या में बिंदुओं और ब्लॉकों के साथ एक 2-डिज़ाइन को सममित डिज़ाइन कहा जाता है।[6] समान अंक वाले सभी 2-डिज़ाइनों में सममित डिज़ाइनों में सबसे कम संख्या में ब्लॉक होते हैं।

एक सममित डिजाइन में आर = के साथ ही साथ बी = वी, और, जबकि यह आम तौर पर मनमाना 2-डिजाइनों में सच नहीं है, एक सममित डिजाइन में प्रत्येक दो अलग-अलग ब्लॉक λ बिंदुओं में मिलते हैं।[7] H. J. Ryser का एक प्रमेय इसका विलोम प्रदान करता है। यदि एक्स एक वी-तत्व सेट है, और बी के-तत्व उपसमुच्चय (ब्लॉक) का एक वी-तत्व सेट है, जैसे कि किसी भी दो अलग-अलग ब्लॉकों में बिल्कुल λ अंक आम हैं, तो (एक्स, बी) एक सममित ब्लॉक है डिज़ाइन।[8] एक सममित डिजाइन के पैरामीटर संतुष्ट करते हैं

यह वी पर मजबूत प्रतिबंध लगाता है, इसलिए अंकों की संख्या मनमानी से दूर है। ब्रुक-रेज़र-चावला प्रमेय इन मापदंडों के संदर्भ में एक सममित डिजाइन के अस्तित्व के लिए आवश्यक, लेकिन पर्याप्त नहीं, शर्तें देता है।

निम्नलिखित सममित 2-डिज़ाइनों के महत्वपूर्ण उदाहरण हैं:

प्रक्षेपी विमान

प्रोजेक्टिव प्लेन # परिमित प्रोजेक्टिव प्लेन λ = 1 और ऑर्डर n> 1 के साथ सममित 2-डिज़ाइन हैं। इन डिज़ाइनों के लिए सममित डिज़ाइन समीकरण बन जाता है:

चूँकि k = r हम प्रोजेक्टिव प्लेन के क्रम को n = k − 1 के रूप में लिख सकते हैं और, ऊपर प्रदर्शित समीकरण से, हम v = (n + 1)n + 1 = n प्राप्त करते हैं2 + n + 1 बिंदु क्रम n के प्रक्षेपी तल में।

प्रक्षेपी तल के रूप में एक सममित डिजाइन है, हमारे पास b = v है, जिसका अर्थ है कि b = n2 + n + 1 भी। संख्या b प्रक्षेपी तल की रेखाओं की संख्या है। λ = 1 के बाद से कोई भी रेखाएँ दोहराई नहीं जा सकती हैं, इसलिए एक प्रक्षेपी तल एक सरल 2-डिज़ाइन है जिसमें रेखाओं की संख्या और बिंदुओं की संख्या हमेशा समान होती है। प्रक्षेपी तल के लिए, k प्रत्येक रेखा पर बिंदुओं की संख्या है और यह n + 1 के बराबर है। इसी प्रकार, r = n + 1 उन रेखाओं की संख्या है जिनके साथ एक दिया गया बिंदु घटना है।

n = 2 के लिए हमें क्रम 2 का प्रक्षेपी तल मिलता है, जिसे फ़ानो तल भी कहा जाता है, जिसमें v = 4 + 2 + 1 = 7 बिंदु और 7 रेखाएँ होती हैं। फ़ानो विमान में, प्रत्येक पंक्ति में n + 1 = 3 बिंदु होते हैं और प्रत्येक बिंदु n + 1 = 3 रेखाओं से संबंधित होता है।

प्रक्षेपी विमानों को सभी आदेशों के लिए जाना जाता है जो अभाज्य संख्याएँ या अभाज्य की शक्तियाँ हैं। वे सममित ब्लॉक डिज़ाइनों के एकमात्र ज्ञात अनंत परिवार (स्थिर λ मान होने के संबंध में) बनाते हैं।[9]


बाइप्लेन

एक बाइप्लेन या बाइप्लेन ज्योमेट्री λ = 2 के साथ एक सममित 2-डिज़ाइन है; अर्थात्, दो बिंदुओं का प्रत्येक सेट दो ब्लॉकों (रेखाओं) में समाहित होता है, जबकि कोई भी दो रेखाएँ दो बिंदुओं में प्रतिच्छेद करती हैं।[9] वे परिमित प्रोजेक्टिव विमानों के समान हैं, सिवाय इसके कि एक रेखा (और एक बिंदु को निर्धारित करने वाली दो रेखाएं) निर्धारित करने वाले दो बिंदुओं के बजाय, दो बिंदु दो रेखाओं (क्रमशः, अंक) का निर्धारण करते हैं। क्रम n का एक बाइप्लेन वह है जिसके ब्लॉक में k = n + 2 बिंदु होते हैं; इसमें v = 1 + (n + 2)(n + 1)/2 अंक हैं (r = k के बाद से)।

18 ज्ञात उदाहरण[10] नीचे सूचीबद्ध हैं।

  • (तुच्छ) ऑर्डर 0 बाइप्लेन में 2 बिंदु हैं (और आकार 2 की रेखाएँ; 2- (2,2,2) डिज़ाइन); यह दो बिंदु हैं, दो ब्लॉक के साथ, प्रत्येक में दोनों बिंदु होते हैं। ज्यामितीय रूप से, यह डिगॉन है।
  • ऑर्डर 1 बाइप्लेन में 4 बिंदु होते हैं (और आकार 3 की रेखाएँ; एक 2- (4,3,2) डिज़ाइन); यह v = 4 और k = 3 के साथ पूर्ण डिज़ाइन है। ज्यामितीय रूप से, बिंदु चतुष्फलक के शीर्ष हैं और ब्लॉक इसके फलक हैं।
  • ऑर्डर 2 बाइप्लेन फ़ानो प्लेन का पूरक है: इसके 7 बिंदु हैं (और आकार 4 की रेखाएँ; एक 2-(7,4,2)), जहाँ रेखाएँ (3-बिंदु) के पूरक के रूप में दी गई हैं ) फ़ानो विमान में लाइनें।[11]
  • ऑर्डर 3 बाइप्लेन में 11 बिंदु हैं (और आकार 5 की रेखाएं; एक 2-(11,5,2)), और इसे के रूप में भी जाना जाता हैPaley biplane रेमंड पाले के बाद; यह ऑर्डर 11 के पाले डिग्राफ से जुड़ा है, जो 11 तत्वों के साथ क्षेत्र का उपयोग करके बनाया गया है, और हैडमार्ड 2-डिजाइन। हैडमार्ड 2-डिजाइन आकार 12 हैडमार्ड मैट्रिक्स से जुड़ा है; पाले निर्माण देखें # पाले निर्माण I.
बीजगणितीय रूप से यह 'पीएसएल' (2,11) में प्रक्षेपी विशेष रैखिक समूह पीएसएल(2,5) के असाधारण एम्बेडिंग से मेल खाता है - देखें प्रोजेक्टिव लीनियर ग्रुप#एक्शन ऑन पी पॉइंट्स|प्रोजेक्टिव लीनियर ग्रुप: विवरण के लिए पी बिंदुओं पर कार्रवाई।[12]
  • ऑर्डर 4 (और 16 अंक, आकार 6 की रेखाएं; एक 2- (16,6,2)) के तीन बाइप्लेन हैं। एक कुमेर विन्यास है। ये तीन डिज़ाइन नियमित हैडमार्ड मैट्रिक्स भी हैं।
  • ऑर्डर 7 (और 37 अंक, आकार 9 की रेखाएं; एक 2-(37,9,2)) के चार बाइप्लेन हैं।[13]
  • ऑर्डर 9 के पांच बाइप्लेन हैं (और 56 अंक, आकार 11 की रेखाएं; एक 2- (56,11,2))।[14]
  • दो बाइप्लेन ऑर्डर 11 (और 79 अंक, आकार 13 की रेखाएं; एक 2- (79,13,2)) के लिए जाने जाते हैं।[15]

ऑर्डर 5, 6, 8 और 10 के बाइप्लेन मौजूद नहीं हैं, जैसा कि ब्रुक-रायसर-चावला प्रमेय द्वारा दिखाया गया है।

हैडमार्ड 2-डिजाइन

m आकार का एक हैडमार्ड मैट्रिक्स एक m × m मैट्रिक्स 'H' है जिसकी प्रविष्टियाँ ±1 ऐसी हैं कि 'HH' = एमआईm, जहां एच H और I का स्थानान्तरण हैm m × m पहचान मैट्रिक्स है। एक हैडमार्ड मैट्रिक्स को मानकीकृत रूप में रखा जा सकता है (अर्थात, समकक्ष हैडमार्ड मैट्रिक्स में परिवर्तित) जहां पहली पंक्ति और पहली कॉलम प्रविष्टियां सभी +1 हैं। यदि आकार m > 2 है तो m 4 का गुणक होना चाहिए।

मानकीकृत रूप में आकार 4a के एक हैडमार्ड मैट्रिक्स को देखते हुए, पहली पंक्ति और पहले कॉलम को हटा दें और प्रत्येक −1 को 0 में बदलें। परिणामी 0–1 मैट्रिक्स 'M' एक सममित 2-(4a − 1, का आपतन मैट्रिक्स है, 2a − 1, a − 1) डिज़ाइन जिसे 'हैडमार्ड 2-डिज़ाइन' कहा जाता है।[16] इसमें है ब्लॉक / अंक; प्रत्येक में शामिल है / इसमें निहित है अंक / ब्लॉक। अंकों की प्रत्येक जोड़ी बिल्कुल में समाहित है ब्लॉक।

यह निर्माण प्रतिवर्ती है, और इन मापदंडों के साथ एक सममित 2-डिज़ाइन की घटना मैट्रिक्स का उपयोग आकार 4a के हैडमार्ड मैट्रिक्स को बनाने के लिए किया जा सकता है।

हल करने योग्य 2-डिजाइन

एक हल करने योग्य 2-डिज़ाइन एक बीआईबीडी है जिसके ब्लॉक को सेट में विभाजित किया जा सकता है (जिसे 'समानांतर वर्ग' कहा जाता है), जिनमें से प्रत्येक बीआईबीडी के बिंदु सेट का विभाजन बनाता है। समांतर कक्षाओं के सेट को डिजाइन का रिज़ॉल्यूशन कहा जाता है।

अगर एक 2-(v,k,λ) हल करने योग्य डिज़ाइन में c समानांतर वर्ग हैं, तो b  ≥ v + c − 1 .[17] नतीजतन, एक सममित डिजाइन में गैर-तुच्छ (एक से अधिक समांतर वर्ग) संकल्प नहीं हो सकता है।[18] आर्किटेपिकल रिज़ॉल्वेबल 2-डिज़ाइन परिमित प्रोजेक्टिव प्लेन#एफ़ाइन प्लेन हैं। प्रसिद्ध 15 छात्रा समस्या का समाधान 2-(15,3,1) डिजाइन का समाधान है।[19]


सामान्य संतुलित डिजाइन (टी-डिजाइन)

किसी भी सकारात्मक पूर्णांक टी को देखते हुए, एक टी-डिज़ाइन बी, एक्स के के-तत्व सबसेट का एक वर्ग है, जिसे ब्लॉक कहा जाता है, जैसे एक्स में प्रत्येक बिंदु एक्स बिल्कुल आर ब्लॉक में दिखाई देता है, और प्रत्येक टी-तत्व सबसेट टी बिल्कुल λ ब्लॉक में दिखाई देता है। . संख्या v (X के तत्वों की संख्या), b (ब्लॉक की संख्या), k, r, λ, और t डिज़ाइन के पैरामीटर हैं। डिज़ाइन को t-(v,k,λ)-डिज़ाइन कहा जा सकता है। फिर से, ये चार संख्याएँ b और r निर्धारित करती हैं और चार संख्याओं को स्वयं मनमाने ढंग से नहीं चुना जा सकता है। समीकरण हैं

जहां एलiउन ब्लॉकों की संख्या है जिनमें अंक और λ का कोई भी i-तत्व सेट होता हैt= λ।

ध्यान दें कि और .

प्रमेय:[20] कोई भी t-(v,k,λ)-डिज़ाइन भी एक s-(v,k,λ) हैs)-1 ≤ s ≤ t वाले किसी भी s के लिए डिज़ाइन करें। (ध्यान दें कि लैम्ब्डा मान ऊपर के रूप में बदलता है और एस पर निर्भर करता है।)

इस प्रमेय का एक परिणाम यह है कि t ≥ 2 वाला प्रत्येक t-डिज़ाइन भी 2-डिज़ाइन है।

एक टी-(वी,के,1)-डिजाइन को स्टेनर प्रणाली कहा जाता है।

ब्लॉक डिज़ाइन शब्द का अर्थ आमतौर पर 2-डिज़ाइन होता है।

व्युत्पन्न और विस्तार योग्य टी-डिजाइन

चलो D = (X, B) एक t-(v,k,λ) डिज़ाइन और p का एक बिंदु ' 'एक्सव्युत्पन्न डिजाइन डीp बिंदु सेट X − {p} है और ब्लॉक के रूप में 'D' के सभी ब्लॉक सेट करता है जिसमें p को हटा दिया गया है। यह एक (t − 1)-(v − 1, k − 1, λ) डिज़ाइन है। ध्यान दें कि अलग-अलग बिंदुओं के संबंध में व्युत्पन्न डिज़ाइन तुल्याकारी नहीं हो सकते हैं। एक डिज़ाइन 'ई' को 'डी' का विस्तार कहा जाता है यदि 'ई' में एक बिंदु पी ऐसा है कि 'ई'p डी के लिए आइसोमोर्फिक है; यदि इसका विस्तार होता है तो हम डी विस्तार योग्य कहते हैं।

प्रमेय:[21] यदि एक t-(v,k,λ) डिजाइन में एक विस्तार है, तो k +1 b(v + 1) को विभाजित करता है।

एकमात्र विस्तार योग्य प्रक्षेपी विमान (सममित 2-(n2 + n + 1, n + 1, 1) डिज़ाइन) ऑर्डर 2 और 4 के हैं।[22] प्रत्येक हैडमार्ड 2-डिज़ाइन विस्तार योग्य है (एक हैडमार्ड 3-डिज़ाइन के लिए)।[23] प्रमेय:।[24] यदि डी, एक सममित 2-(v,k,λ) डिजाइन, विस्तार योग्य है, तो निम्न में से एक धारण करता है:

  1. डी एक हैडमार्ड 2-डिज़ाइन है,
  2. वी  =  (λ + 2)(λ2 + 4λ + 2), के = λ2 + 3λ + 1,
  3. वी = 495, के = 39, λ = 3।

ध्यान दें कि क्रम दो का प्रक्षेपी तल एक हैडमार्ड 2-डिज़ाइन है; क्रम चार के प्रक्षेपी तल में पैरामीटर हैं जो स्थिति 2 में आते हैं; मामले 2 में मापदंडों के साथ केवल अन्य ज्ञात सममित 2-डिजाइन ऑर्डर 9 बाइप्लेन हैं, लेकिन उनमें से कोई भी विस्तार योग्य नहीं है; और केस 3 के पैरामीटर के साथ कोई ज्ञात सममित 2-डिज़ाइन नहीं है।[25]


उलटा विमान

एक एफाइन प्लेन (इंसिडेंस ज्योमेट्री) के विस्तार के मापदंडों के साथ एक डिजाइन#फिनिट एफाइन प्लेन, यानी, एक 3-(n)2 + 1, n + 1, 1) डिज़ाइन, को क्रम n का परिमित 'इनवर्सिव प्लेन' या मोबियस प्लेन कहा जाता है।

वास्तव में, सभी ज्ञात उलटे विमानों के कुछ उलटा विमानों का ज्यामितीय विवरण देना संभव है। PG(3,q) में एक ओवॉइड (प्रोजेक्टिव ज्योमेट्री) q का एक सेट है2 + 1 अंक, कोई तीन संरेख नहीं। यह दिखाया जा सकता है कि PG(3,q) का प्रत्येक तल (जो एक हाइपरप्लेन है क्योंकि ज्यामितीय आयाम 3 है) या तो 1 या q + 1 बिंदुओं में एक अंडाकार O से मिलता है। O के आकार q + 1 के समतल खंड क्रम q के एक व्युत्क्रम तल के ब्लॉक हैं। इस तरह से उठने वाले किसी भी उलटे विमान को अंडे जैसा कहा जाता है। सभी ज्ञात उत्क्रमणीय तल अंडे के समान होते हैं।

अंडाकार का एक उदाहरण द्विघात (प्रक्षेपी ज्यामिति) है, द्विघात रूप के शून्यों का समूह

एक्स1x2 + एफ (एक्स3, एक्स4),

जहाँ f GF(q) से अधिक दो चरों में एक अलघुकरणीय द्विघात रूप है। [एफ (एक्स, वाई) = एक्स2 + xy + y2 उदाहरण के लिए]।

यदि q 2 की एक विषम शक्ति है, तो एक अन्य प्रकार का अंडाकार ज्ञात होता है - ओवॉइड (प्रोजेक्टिव ज्योमेट्री) | सुजुकी-टिट ओवॉइड।

'प्रमेय'। क्यू को एक सकारात्मक पूर्णांक होने दें, कम से कम 2. (ए) यदि क्यू विषम है, तो कोई भी ओवॉइड प्रक्षेप्य ज्यामिति पीजी (3, क्यू) में दीर्घवृत्त चतुर्भुज के समतुल्य है; इसलिए क्यू एक प्रमुख शक्ति है और ऑर्डर क्यू का एक अद्वितीय अंडे जैसा उलटा विमान है। (लेकिन यह ज्ञात नहीं है कि क्या गैर-अंडाकार वाले मौजूद हैं।) (बी) यदि q सम है, तो q 2 की शक्ति है और q कोटि का कोई भी व्युत्क्रम तल अंडे जैसा है (लेकिन कुछ अज्ञात अंडाणु हो सकते हैं)।

आंशिक रूप से संतुलित डिजाइन (PBIBDs)

एक एन-क्लास एसोसिएशन स्कीम में आकार v का एक सेट (गणित) X होता है, साथ में X × X के एक सेट S के विभाजन के साथ n + 1 बाइनरी संबंध, R0, आर1, ..., आरn. संबंध आर में तत्वों की एक जोड़ीi इथ-सहयोगी कहा जाता है। X के प्रत्येक अवयव में n हैiith सहयोगी। आगे:

  • और इसे पहचान संबंध कहा जाता है।
  • परिभाषित करना , यदि S में R है, तो S में R* है
  • अगर , की संख्या ऐसा है कि और एक स्थिरांक है i, j, k पर निर्भर करता है लेकिन x और y की विशेष पसंद पर नहीं।

एक संघ योजना क्रमविनिमेय है अगर सभी i, j और k के लिए। अधिकांश लेखक इस संपत्ति को मानते हैं।

n संबद्ध वर्गों (PBIBD(n)) के साथ 'आंशिक रूप से संतुलित अपूर्ण ब्लॉक डिज़ाइन' एक ब्लॉक डिज़ाइन है जो v-सेट X पर आधारित है जिसमें b ब्लॉक प्रत्येक आकार k का है और प्रत्येक तत्व r ब्लॉक में प्रदर्शित होता है, जैसे कि एक एक्स पर परिभाषित n वर्गों के साथ संबंध योजना जहां, यदि तत्व x और y ith सहयोगी हैं, 1 ≤ i ≤ n, तो वे ठीक λ में एक साथ हैंi ब्लॉक।

एक पीबीआईबीडी (एन) एक संघ योजना निर्धारित करता है लेकिन विपरीत गलत है।[26]


उदाहरण

चलो ए (3) सेट एक्स = {1,2,3,4,5,6} पर तीन सहयोगी वर्गों के साथ निम्नलिखित एसोसिएशन योजना बनें। (i,j) प्रविष्टि s है यदि तत्व i और j संबंध R में हैंs.

  1 2 3 4 5 6
1  0   1   1   2   3   3 
2  1   0   1   3   2   3 
3  1   1   0   3   3   2 
4  2   3   3   0   1   1 
5  3   2   3   1   0   1 
6  3   3   2   1   1   0 

A(3) पर आधारित PBIBD(3) के ब्लॉक हैं:

 124   134   235   456 
 125   136   236   456 

इस PBIBD(3) के पैरामीटर हैं: v  =  6, b =  8, k =  3, r =  4 और λ1= एल2= 2 और λ3= 1. साथ ही, संबद्धता योजना के लिए हमारे पास n है0 = एन2 = 1 और एन1 = एन3  =  2.[27] घटना मैट्रिक्स एम है

<डिव वर्ग = केंद्र>

और सहमति मैट्रिक्स एम.एमटी है

<डिव वर्ग = केंद्र>

जिससे हम λ और r मान पुनर्प्राप्त कर सकते हैं।

गुण

PBIBD(m) के पैरामीटर संतुष्ट करते हैं:[28]

एक PBIBD(1) एक BIBD और एक PBIBD(2) है जिसमें λ1 = λ2 बीआईबीडी है।[29]


दो सहयोगी वर्ग PBIBDs

PBIBD (2) का सबसे अधिक अध्ययन किया गया है क्योंकि वे PBIBDs में सबसे सरल और सबसे उपयोगी हैं।[30] वे छह प्रकार में आते हैं[31] तत्कालीन ज्ञात PBIBD(2)s के वर्गीकरण के आधार पर Bose & Shimamoto (1952):[32]

  1. समूह विभाज्य;
  2. त्रिकोणीय;
  3. लैटिन वर्ग प्रकार;
  4. चक्रीय;
  5. आंशिक ज्यामिति प्रकार;
  6. मिश्रित।

अनुप्रयोग

ब्लॉक डिजाइनों का गणितीय विषय प्रयोगों के डिजाइन के सांख्यिकीय ढांचे में उत्पन्न हुआ। ये डिज़ाइन विचरण के विश्लेषण | विचरण के विश्लेषण (ANOVA) की तकनीक के अनुप्रयोगों में विशेष रूप से उपयोगी थे। ब्लॉक डिजाइनों के उपयोग के लिए यह एक महत्वपूर्ण क्षेत्र बना हुआ है।

जबकि विषय की उत्पत्ति जैविक अनुप्रयोगों (जैसा कि कुछ मौजूदा शब्दावली में है) पर आधारित है, डिज़ाइन का उपयोग कई अनुप्रयोगों में किया जाता है जहाँ व्यवस्थित तुलना की जा रही है, जैसे कि सॉफ्टवेयर परीक्षण में।

ब्लॉक डिजाइनों का घटना मैट्रिक्स दिलचस्प ब्लॉक कोड का एक प्राकृतिक स्रोत प्रदान करता है जो त्रुटि सुधार कोड के रूप में उपयोग किया जाता है। पल्स-पोजिशन मॉड्यूलेशन के रूप में उनकी घटना मैट्रिसेस की पंक्तियों को प्रतीकों के रूप में भी उपयोग किया जाता है।[33]


सांख्यिकीय अनुप्रयोग

मान लीजिए कि त्वचा कैंसर के शोधकर्ता तीन अलग-अलग सनस्क्रीन का परीक्षण करना चाहते हैं। वे एक परीक्षण व्यक्ति के हाथों के ऊपरी किनारों पर दो अलग-अलग सनस्क्रीन लगाते हैं। एक यूवी विकिरण के बाद वे सनबर्न के मामले में त्वचा की जलन को रिकॉर्ड करते हैं। उपचार की संख्या 3 (सनस्क्रीन) है और ब्लॉक आकार 2 (प्रति व्यक्ति हाथ) है।

R-package agricolae के R (प्रोग्रामिंग लैंग्वेज)-फंक्शन डिजाइन.बिब द्वारा संबंधित बीआईबीडी उत्पन्न किया जा सकता है और इसे निम्नलिखित तालिका में निर्दिष्ट किया गया है:

Plots Block Treatment
101 1 3
102 1 2
201 2 1
202 2 3
301 3 2
302 3 1

अन्वेषक मापदंडों का चयन करता है v = 3, k = 2 और λ = 1 ब्लॉक डिजाइन के लिए जो फिर आर-फंक्शन में डाले जाते हैं। इसके बाद, शेष पैरामीटर b और r स्वचालित रूप से निर्धारित होते हैं।

बुनियादी संबंधों का उपयोग करके हम गणना करते हैं कि हमें क्या चाहिए b = 3 ब्लॉक, यानी 3 लोगों को एक संतुलित अधूरा ब्लॉक डिज़ाइन प्राप्त करने के लिए परीक्षण करें। ब्लॉकों को लेबल करना A, B और C, भ्रम से बचने के लिए, हमारे पास ब्लॉक डिज़ाइन है,

A = {2, 3},    B = {1, 3} और C = {1, 2}.

संबंधित घटना मैट्रिक्स निम्न तालिका में निर्दिष्ट है:

Treatment Block A Block B Block C
1 0 1 1
2 1 0 1
3 1 1 0

प्रत्येक उपचार 2 ब्लॉकों में होता है, इसलिए r = 2.

केवल एक ब्लॉक (C) में एक साथ उपचार 1 और 2 शामिल हैं और यह उपचार के जोड़े (1,3) और (2,3) पर लागू होता है। इसलिए, λ = 1.

इस उदाहरण में एक पूर्ण डिजाइन (प्रत्येक ब्लॉक में सभी उपचार) का उपयोग करना असंभव है क्योंकि परीक्षण के लिए 3 सनस्क्रीन हैं, लेकिन प्रत्येक व्यक्ति पर केवल 2 हाथ हैं।

यह भी देखें

टिप्पणियाँ

  1. Colbourn & Dinitz 2007, pp.17−19
  2. Stinson 2003, p.1
  3. P. Dobcsányi, D.A. Preece. L.H. Soicher (2007-10-01). "दोहराए गए ब्लॉकों के साथ संतुलित अपूर्ण-ब्लॉक डिज़ाइनों पर". European Journal of Combinatorics (in English). 28 (7): 1955–1970. doi:10.1016/j.ejc.2006.08.007. ISSN 0195-6698.
  4. Proved by Tarry in 1900 who showed that there was no pair of orthogonal Latin squares of order six. The 2-design with the indicated parameters is equivalent to the existence of five mutually orthogonal Latin squares of order six.
  5. 5.0 5.1 5.2 Colbourn & Dinitz 2007, p. 27
  6. They have also been referred to as projective designs or square designs. These alternatives have been used in an attempt to replace the term "symmetric", since there is nothing symmetric (in the usual meaning of the term) about these designs. The use of projective is due to P.Dembowski (Finite Geometries, Springer, 1968), in analogy with the most common example, projective planes, while square is due to P. Cameron (Designs, Graphs, Codes and their Links, Cambridge, 1991) and captures the implication of v = b on the incidence matrix. Neither term has caught on as a replacement and these designs are still universally referred to as symmetric.
  7. Stinson 2003, pg.23, Theorem 2.2
  8. Ryser 1963, pp. 102–104
  9. 9.0 9.1 Hughes & Piper 1985, pg.109
  10. Hall 1986, pp.320-335
  11. Assmus & Key 1992, pg.55
  12. Martin, Pablo; Singerman, David (April 17, 2008), From Biplanes to the Klein quartic and the Buckyball (PDF), p. 4
  13. Salwach & Mezzaroba 1978
  14. Kaski & Östergård 2008
  15. Aschbacher 1971, pp. 279–281
  16. Stinson 2003, pg. 74, Theorem 4.5
  17. Hughes & Piper 1985, pg. 156, Theorem 5.4
  18. Hughes & Piper 1985, pg. 158, Corollary 5.5
  19. Beth, Jungnickel & Lenz 1986, pg. 40 Example 5.8
  20. Stinson 2003, pg.203, Corollary 9.6
  21. Hughes & Piper 1985, pg.29
  22. Cameron & van Lint 1991, pg. 11, Proposition 1.34
  23. Hughes & Piper 1985, pg. 132, Theorem 4.5
  24. Cameron & van Lint 1991, pg. 11, Theorem 1.35
  25. Colbourn & Dinitz 2007, pg. 114, Remarks 6.35
  26. Street & Street 1987, pg. 237
  27. Street & Street 1987, pg. 238
  28. Street & Street 1987, pg. 240, Lemma 4
  29. Colbourn & Dinitz 2007, pg. 562, Remark 42.3 (4)
  30. Street & Street 1987, pg. 242
  31. Not a mathematical classification since one of the types is a catch-all "and everything else".
  32. Raghavarao 1988, pg. 127
  33. Noshad, Mohammad; Brandt-Pearce, Maite (Jul 2012). "सममित संतुलित अपूर्ण ब्लॉक अभिकल्पनाओं का उपयोग करते हुए निष्कासित पीपीएम". IEEE Communications Letters. 16 (7): 968–971. arXiv:1203.5378. Bibcode:2012arXiv1203.5378N. doi:10.1109/LCOMM.2012.042512.120457. S2CID 7586742.


संदर्भ

  • van Lint, J.H.; Wilson, R.M. (1992). A Course in Combinatorics. Cambridge University Press. ISBN 978-0-521-41057-1.


बाहरी संबंध