परिक्षेपण संबंध

From Vigyanwiki
Revision as of 12:09, 9 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Relation of wavelength/wavenumber as a function of a wave's frequency}} Image:Prism rainbow schema.png|frame|right|एक प्रिज्म में...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक प्रिज्म में, फैलाव (ऑप्टिक्स) अलग-अलग रंगों को अलग-अलग कोणों पर अपवर्तन का कारण बनता है, सफेद रोशनी को रंगों के इंद्रधनुष में विभाजित करता है।

भौतिक विज्ञान और विद्युत अभियन्त्रण में, फैलाव संबंध एक माध्यम में तरंगों के गुणों पर फैलाव के प्रभाव का वर्णन करते हैं। एक फैलाव संबंध एक तरंग की तरंग दैर्ध्य या तरंग संख्या को उसकी आवृत्ति से संबंधित करता है। फैलाव संबंध को देखते हुए, आवृत्ति के एक समारोह के रूप में, माध्यम में तरंगों के चरण वेग और समूह वेग की गणना कर सकते हैं। ज्यामिति-निर्भर और भौतिक-निर्भर फैलाव संबंधों के अलावा, व्यापक क्रामर्स-क्रोनिग संबंध तरंग प्रसार और क्षीणन की आवृत्ति निर्भरता का वर्णन करते हैं।

फैलाव या तो ज्यामितीय सीमा स्थितियों (वेवगाइड्स, उथले पानी) या संचारण माध्यम के साथ तरंगों की बातचीत के कारण हो सकता है। भौतिक तरंगों के रूप में माने जाने वाले प्राथमिक कणों में ज्यामितीय बाधाओं और अन्य मीडिया की अनुपस्थिति में भी एक गैर-विकिरण संबंध होता है।

फैलाव की उपस्थिति में, तरंग वेग को विशिष्ट रूप से परिभाषित नहीं किया जाता है, चरण वेग और समूह वेग के भेद को जन्म देता है।

फैलाव

फैलाव तब होता है जब विभिन्न तरंग दैर्ध्य की साइनसोइडल तरंगों में अलग-अलग प्रसार वेग होते हैं, जिससे कि मिश्रित तरंग दैर्ध्य का एक तरंग पैकेट अंतरिक्ष में फैल जाता है। समतल तरंग की गति, , तरंग की तरंग दैर्ध्य का एक कार्य है :

तरंग की गति, तरंग दैर्ध्य और आवृत्ति, f, पहचान से संबंधित हैं

कार्यक्रम दिए गए माध्यम के फैलाव संबंध को व्यक्त करता है। कोणीय आवृत्ति के संदर्भ में फैलाव संबंध अधिक सामान्य रूप से व्यक्त किए जाते हैं और तरंग संख्या . उपरोक्त संबंध को इन चरों में पुनः लिखने पर प्राप्त होता है

जहाँ अब हम f को k के फलन के रूप में देखते हैं। फैलाव संबंध का वर्णन करने के लिए ω(k) का उपयोग मानक बन गया है क्योंकि इस फ़ंक्शन के माध्यम से चरण वेग ω/k और समूह वेग dω/dk दोनों का सुविधाजनक प्रतिनिधित्व है।

जिन समतल तरंगों पर विचार किया जा रहा है, उनके द्वारा वर्णित किया जा सकता है

कहाँ

  • A तरंग का आयाम है,
  • 0 = ए (0, 0),
  • x लहर की यात्रा की दिशा के साथ एक स्थिति है, और
  • t वह समय है जिस पर तरंग का वर्णन किया गया है।

निर्वात में समतल तरंगें

निर्वात में समतल तरंगें तरंग प्रसार का सबसे सरल मामला है: कोई ज्यामितीय बाधा नहीं, किसी संचारण माध्यम के साथ कोई अंतःक्रिया नहीं।

निर्वात में विद्युत चुम्बकीय तरंगें

निर्वात में विद्युत चुम्बकीय तरंगों के लिए, कोणीय आवृत्ति तरंग संख्या के समानुपाती होती है:

यह एक रैखिक फैलाव संबंध है। इस मामले में, चरण वेग और समूह वेग समान हैं:

वे c, निर्वात में प्रकाश की गति, एक आवृत्ति-स्वतंत्र स्थिरांक द्वारा दिए गए हैं।

डी ब्रोगली फैलाव संबंध

रोजमर्रा की जिंदगी की कई वस्तुओं के लिए गतिज ऊर्जा बनाम संवेग का मुक्त-अंतरिक्ष फैलाव प्लॉट

कुल ऊर्जा, गति और कणों का द्रव्यमान ऊर्जा-संवेग संबंध के माध्यम से जुड़ा हुआ है[1] पॉल डिराक द्वारा स्थापित:

जो अतिसापेक्षतावादी सीमा में है

और गैर सापेक्षतावादी सीमा में है

कहाँ अपरिवर्तनीय द्रव्यमान है। असापेक्षतावादी सीमा में, एक स्थिर है, और संवेग के संदर्भ में व्यक्त की जाने वाली परिचित गतिज ऊर्जा है .

अतिसापेक्षिक सीमा से गैर-सापेक्षतावादी व्यवहार में संक्रमण पी से पी तक ढलान परिवर्तन के रूप में दिखाई देता है2 जैसा कि ई बनाम पी के लॉग-लॉग फैलाव प्लॉट में दिखाया गया है।

प्राथमिक कण, परमाणु नाभिक, परमाणु और यहां तक ​​​​कि अणु कुछ संदर्भों में पदार्थ तरंगों के रूप में व्यवहार करते हैं। डी ब्रोगली संबंधों के अनुसार, उनकी [[गतिज ऊर्जा]] E को आवृत्ति ω के रूप में व्यक्त किया जा सकता है, और उनकी गति p को तरंग संख्या k के रूप में, कम प्लैंक स्थिरांक ħ का उपयोग करके:

तदनुसार, कोणीय आवृत्ति और वेवनंबर एक फैलाव संबंध के माध्यम से जुड़े हुए हैं, जो कि गैर-सापेक्षतावादी सीमा में पढ़ता है


आवृत्ति बनाम तरंग संख्या

जैसा कि ऊपर उल्लेख किया गया है, जब एक माध्यम में ध्यान अवशोषण के बजाय अपवर्तन पर होता है - अर्थात, अपवर्तक सूचकांक के वास्तविक भाग पर - तरंग संख्या पर कोणीय आवृत्ति की कार्यात्मक निर्भरता को फैलाव संबंध के रूप में संदर्भित करना आम है। कणों के लिए, यह गति के कार्य के रूप में ऊर्जा के ज्ञान का अनुवाद करता है।

तरंगें और प्रकाशिकी

नाम फैलाव संबंध मूल रूप से प्रकाशिकी से आता है। प्रकाश की प्रभावी गति को तरंग दैर्ध्य पर निर्भर करना संभव है, एक ऐसी सामग्री के माध्यम से प्रकाश पारित करना जिसमें अपवर्तन का एक गैर-निरंतर सूचकांक होता है, या एक गैर-समान माध्यम जैसे वेवगाइड में प्रकाश का उपयोग करके। इस मामले में, तरंग समय के साथ फैल जाएगी, जैसे कि एक संकीर्ण नाड़ी एक विस्तारित नाड़ी बन जाएगी, यानी फैल जाएगी। इन सामग्रियों में, समूह वेग के रूप में जाना जाता है[2] और उस गति से मेल खाती है जिस पर नाड़ी का शिखर फैलता है, चरण वेग से भिन्न मान।[3]


गहरे पानी की लहरें

गहरे पानी पर सतही गुरुत्व तरंगों का आवृत्ति फैलाव। लाल वर्ग चरण वेग के साथ चलता है, और हरे बिंदु समूह वेग के साथ प्रचार करते हैं। इस गहरे पानी के मामले में, चरण वेग समूह वेग का दोगुना है। वह लाल वर्ग उस समय में आकृति को पार करता है जब वह लेता है हरी बिंदी आधा पार करने के लिए।

गहरे महासागरीय सतह तरंग के लिए फैलाव संबंध को प्राय: इस रूप में लिखा जाता है

जहाँ g गुरुत्वाकर्षण के कारण त्वरण है। गहरे पानी, इस संबंध में, आमतौर पर उस मामले के रूप में निरूपित किया जाता है जहां पानी की गहराई तरंग दैर्ध्य के आधे से अधिक होती है।[4] इस मामले में चरण वेग है

और समूह वेग है


एक तार पर लहरें

एक गैर-फैलाने वाली अनुप्रस्थ तरंग की दो-आवृत्ति धड़कन। चूंकि लहर गैर-फैलाने वाला है, चरण और समूह वेग बराबर हैं।

एक आदर्श स्ट्रिंग के लिए, फैलाव संबंध को इस प्रकार लिखा जा सकता है

जहां टी स्ट्रिंग में तनाव बल है, और μ प्रति इकाई लंबाई में स्ट्रिंग का द्रव्यमान है। निर्वात में विद्युत चुम्बकीय तरंगों के मामले में, आदर्श तार इस प्रकार एक गैर-फैलाने वाला माध्यम हैं, अर्थात चरण और समूह वेग कंपन आवृत्ति के बराबर और स्वतंत्र (पहले क्रम में) हैं।

एक गैर आदर्श स्ट्रिंग के लिए, जहाँ कठोरता को ध्यान में रखा जाता है, फैलाव संबंध को इस प्रकार लिखा जाता है

कहाँ एक स्थिर है जो स्ट्रिंग पर निर्भर करता है।

इलेक्ट्रॉन बैंड संरचना

ठोसों के अध्ययन में इलेक्ट्रॉनों के परिक्षेपण संबंध का अध्ययन सर्वोपरि है। क्रिस्टल की आवधिकता का अर्थ है कि एक निश्चित गति के लिए कई फर्मी सतह संभव हैं और कुछ ऊर्जा किसी भी गति पर उपलब्ध नहीं हो सकती हैं। सभी संभावित ऊर्जाओं और संवेगों के संग्रह को सामग्री की बैंड संरचना के रूप में जाना जाता है। बैंड संरचना के गुण परिभाषित करते हैं कि सामग्री विद्युत इन्सुलेशन, अर्धचालक या कंडक्टर (सामग्री) है या नहीं।

फोनोन्स

फ़ोनॉन ठोस में ध्वनि तरंगों के लिए होते हैं जो फोटॉन प्रकाश के लिए होते हैं: वे क्वांटा हैं जो इसे ले जाते हैं। किसी सामग्री के ध्वनिक और तापीय गुणों से सीधे संबंधित होने के कारण फ़ोनों का फैलाव संबंध भी गैर-तुच्छ और महत्वपूर्ण है। अधिकांश प्रणालियों के लिए, फ़ोनों को दो मुख्य प्रकारों में वर्गीकृत किया जा सकता है: जिनके बैंड ब्रिलौइन क्षेत्र के केंद्र में शून्य हो जाते हैं, उन्हें ध्वनिक फ़ोनॉन कहा जाता है, क्योंकि वे लंबी तरंग दैर्ध्य की सीमा में शास्त्रीय ध्वनि के अनुरूप होते हैं। अन्य [[ऑप्टिकल फोनन]] हैं, क्योंकि वे विद्युत चुम्बकीय विकिरण से उत्तेजित हो सकते हैं।

इलेक्ट्रॉन प्रकाशिकी

उच्च-ऊर्जा के साथ (उदा., 200 keV, 32 fJ) एक संचरण इलेक्ट्रॉन माइक्रोस्कोप में इलेक्ट्रॉन, अभिसरण बीम इलेक्ट्रॉन विवर्तन (सीबीईडी) पैटर्न में उच्च-क्रम वॉश जोन (एचओएलजेड) लाइनों की ऊर्जा निर्भरता, प्रभाव में, एक क्रिस्टल के त्रि-आयामी ब्रिलौइन के सीधे छवि क्रॉस-सेक्शन की अनुमति देती है। क्षेत्र।[5] विवर्तन के इस गतिशील सिद्धांत ने जाली पैरामीटर, बीम ऊर्जा, और हाल ही में इलेक्ट्रॉनिक्स उद्योग के लिए: जाली तनाव के सटीक माप में आवेदन पाया है।

इतिहास

आइजैक न्यूटन ने प्रिज्म में अपवर्तन का अध्ययन किया लेकिन फैलाव संबंध की भौतिक निर्भरता को पहचानने में विफल रहे, एक अन्य शोधकर्ता के काम को खारिज कर दिया जिसका प्रिज्म के फैलाव का माप न्यूटन के खुद से मेल नहीं खाता था।[6] 1776 में पियरे-साइमन लाप्लास द्वारा पानी पर लहरों के फैलाव का अध्ययन किया गया था।[7] क्रेमर्स-क्रोनिग संबंधों (1926-27) की सार्वभौमिकता सभी प्रकार की तरंगों और कणों के बिखरने के सिद्धांत में कारण के फैलाव संबंध के संबंध पर बाद के पत्रों के साथ स्पष्ट हो गई।[8]


यह भी देखें

संदर्भ

  1. Taylor (2005). शास्त्रीय यांत्रिकी. University Science Books. p. 652. ISBN 1-891389-22-X.
  2. F. A. Jenkins and H. E. White (1957). प्रकाशिकी की मूल बातें. New York: McGraw-Hill. p. 223. ISBN 0-07-032330-5.
  3. R. A. Serway, C. J. Moses and C. A. Moyer (1989). आधुनिक भौतिकी. Philadelphia: Saunders. p. 118. ISBN 0-534-49340-8.
  4. R. G. Dean and R. A. Dalrymple (1991). इंजीनियरों और वैज्ञानिकों के लिए जल तरंग यांत्रिकी. Advanced Series on Ocean Engineering. Vol. 2. World Scientific, Singapore. ISBN 978-981-02-0420-4. See page 64–66.
  5. P. M. Jones, G. M. Rackham and J. W. Steeds (1977). "इलेक्ट्रॉन विवर्तन में उच्च क्रम लाउ ज़ोन प्रभाव और जाली पैरामीटर निर्धारण में उनका उपयोग". Proceedings of the Royal Society. A 354 (1677): 197. Bibcode:1977RSPSA.354..197J. doi:10.1098/rspa.1977.0064. S2CID 98158162.
  6. Westfall, Richard S. (1983). Never at Rest: A Biography of Isaac Newton (illustrated, revised ed.). Cambridge University. p. 276. ISBN 9780521274357.
  7. A. D. D. Craik (2004). "जल तरंग सिद्धांत की उत्पत्ति". Annual Review of Fluid Mechanics. 36: 1–28. Bibcode:2004AnRFM..36....1C. doi:10.1146/annurev.fluid.36.050802.122118.
  8. John S. Toll (1956). "Causality and the dispersion relation: Logical foundations". Phys. Rev. 104 (6): 1760–1770. Bibcode:1956PhRv..104.1760T. doi:10.1103/PhysRev.104.1760.


बाहरी संबंध