सिद्धांत सजातीय समष्टि

From Vigyanwiki
Revision as of 14:41, 5 April 2023 by alpha>Indicwiki (Created page with "{{redirect|Torsor|another use|Torsor (algebraic geometry)}} गणित में, एक प्रमुख सजातीय स्थान,<ref>{{cite journal|title=ए...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक प्रमुख सजातीय स्थान,[1] या torsor, एक समूह (गणित) के लिए G G के लिए एक सजातीय स्थान X है जिसमें हर बिंदु का स्टेबलाइज़र उपसमूह तुच्छ है। समान रूप से, एक समूह G के लिए एक प्रमुख सजातीय स्थान एक गैर-खाली सेट X है जिस पर G समूह क्रिया (गणित) समूह क्रिया (गणित)#Types_of_actions और समूह क्रिया (गणित) #Types_of_actions (अर्थात्, X में किसी भी x, y के लिए, G में एक अद्वितीय g मौजूद है जैसे कि x·g = y, जहाँ · X पर G की (दाईं ओर) क्रिया को दर्शाता है। एक समान परिभाषा अन्य श्रेणी (गणित) में लागू होती है, जहां, उदाहरण के लिए,

परिभाषा

यदि G गैर-अबेलियन समूह है, तो किसी को बाएं और दाएं टॉर्सर्स के बीच अंतर करना चाहिए, चाहे कार्रवाई बाएं या दाएं हो। इस लेख में, हम सही कार्यों का उपयोग करेंगे।

परिभाषा को और अधिक स्पष्ट रूप से बताने के लिए, एक्स एक जी-टोरसर या जी-प्रिंसिपल सजातीय स्थान है यदि एक्स गैर-रिक्त है और मानचित्र से सुसज्जित है (उपयुक्त श्रेणी में) X × GX ऐसा है कि

x·1 = x
x·(gh) = (x·g)·h

सभी के लिए xX और सभी g,hG और ऐसा है कि map X × GX × X द्वारा दिए गए

एक समरूपता है (सेट, या टोपोलॉजिकल रिक्त स्थान या ..., उपयुक्त के रूप में, यानी प्रश्न में श्रेणी में)।

ध्यान दें कि इसका मतलब है कि एक्स और जी आइसोमोर्फिक हैं (प्रश्न में श्रेणी में; समूह के रूप में नहीं: निम्नलिखित देखें)। हालाँकि- और यह आवश्यक बिंदु है- X ​​में कोई पसंदीदा 'पहचान' बिंदु नहीं है। यानी, X बिल्कुल G जैसा दिखता है सिवाय इसके कि कौन सा बिंदु पहचान को भुला दिया गया है। (इस अवधारणा का उपयोग अक्सर गणित में एक अधिक आंतरिक दृष्टिकोण को पारित करने के तरीके के रूप में किया जाता है, शीर्षक 'मूल को फेंक दें' के तहत।)

चूँकि X एक समूह नहीं है, हम तत्वों का गुणन नहीं कर सकते हैं; हालाँकि, हम उनका भागफल ले सकते हैं। यानी एक नक्शा है X × XG जो भेजता है (x,y) अद्वितीय तत्व के लिए g = x \ yG ऐसा है कि y = x·g.

हालांकि, सही समूह क्रिया के साथ बाद वाली संक्रिया की संरचना, एक त्रिगुट संक्रिया उत्पन्न करती है X × (X × X) → X, जो समूह गुणन के एक सामान्य सामान्यीकरण के रूप में कार्य करता है और जो बीजगणितीय रूप से एक प्रमुख सजातीय स्थान को चिह्नित करने के लिए पर्याप्त है और आंतरिक रूप से उस समूह को चिह्नित करता है जिससे यह जुड़ा हुआ है। अगर हम निरूपित करते हैं इस त्रिगुट संक्रिया के परिणाम के बाद निम्नलिखित सर्वसमिका (गणित)

अतिरिक्त संपत्ति के दौरान, एक प्रमुख सजातीय स्थान को परिभाषित करने के लिए पर्याप्त होगा

उन जगहों की पहचान करता है जो एबेलियन समूहों से जुड़े हैं। समूह को औपचारिक भागफल के रूप में परिभाषित किया जा सकता है तुल्यता संबंध के अधीन

,

समूह उत्पाद के साथ, पहचान और व्युत्क्रम परिभाषित, क्रमशः, द्वारा

,
,

और समूह कार्रवाई द्वारा


उदाहरण

बाएं या दाएं गुणन की प्राकृतिक क्रिया के तहत प्रत्येक समूह G को स्वयं बाएं या दाएं G-torsor के रूप में सोचा जा सकता है।

एक अन्य उदाहरण affine space अवधारणा है: एक सदिश स्थान V के अंतर्निहित affine स्थान A का विचार संक्षेप में यह कहकर कहा जा सकता है कि A, V के लिए एक प्रमुख सजातीय स्थान है जो अनुवादों के योज्य समूह के रूप में कार्य करता है।

किसी भी नियमित पॉलीटॉप का ध्वज (ज्यामिति) इसके समरूपता समूह के लिए एक टोरसर बनाता है।

सदिश समष्टि V दिए जाने पर हम G को सामान्य रैखिक समूह GL(V) और X को V के सभी (आदेशित) आधार (रैखिक बीजगणित) का समुच्चय मान सकते हैं। तब G, X पर इस तरह कार्य करता है कि यह कार्य करता है वी के वैक्टर पर; और यह समूह क्रिया (गणित) का कार्य करता है क्योंकि किसी भी आधार को G के माध्यम से किसी अन्य में रूपांतरित किया जा सकता है। क्या अधिक है, एक आधार के प्रत्येक वेक्टर को ठीक करने वाला एक रैखिक परिवर्तन V में सभी v को ठीक करेगा, इसलिए सामान्य रैखिक समूह GL(V) का तटस्थ तत्व होने के नाते: ताकि X वास्तव में एक प्रमुख सजातीय स्थान हो। एक रेखीय बीजगणित तर्क में आधार-निर्भरता का पालन करने का एक तरीका एक्स में चर एक्स को ट्रैक करना है। इसी तरह, ऑर्थोनॉर्मल आधार का स्थान (स्टीफेल कई गुना k-frame|n-frames) ऑर्थोगोनल समूह के लिए एक प्रमुख सजातीय स्थान है।

श्रेणी सिद्धांत में, यदि दो वस्तुएँ X और Y समरूपी हैं, तो उनके बीच की समरूपता, Iso(X,Y), X, Aut(X) के ऑटोमोर्फिज़्म समूह के लिए एक टॉर्सर बनाती है, और इसी तरह Aut(Y) के लिए; वस्तुओं के बीच समरूपता का एक विकल्प इन समूहों के बीच एक समरूपता को जन्म देता है और इन दो समूहों के साथ टॉर्सर की पहचान करता है, टॉर्सर को एक समूह संरचना देता है (क्योंकि अब इसका एक आधार बिंदु है)।

अनुप्रयोग

प्रिंसिपल सजातीय अंतरिक्ष अवधारणा प्रिंसिपल बंडल का एक विशेष मामला है: इसका मतलब है कि एक एकल बिंदु के आधार के साथ एक प्रिंसिपल बंडल। दूसरे शब्दों में प्रमुख बंडलों का स्थानीय सिद्धांत आधार में कुछ मापदंडों के आधार पर प्रमुख सजातीय रिक्त स्थान के परिवार का है। 'मूल' की आपूर्ति एक फाइबर बंडल द्वारा की जा सकती है # बंडल के खंड - ऐसे वर्गों को आमतौर पर आधार पर स्थानीय रूप से मौजूद माना जाता है - बंडल स्थानीय रूप से तुच्छ होता है, ताकि स्थानीय संरचना एक कार्टेशियन उत्पाद की हो। लेकिन खंड अक्सर विश्व स्तर पर मौजूद नहीं होंगे। उदाहरण के लिए एक अंतर कई गुना M में फ्रेम बंडल का एक प्रमुख बंडल होता है जो उसके स्पर्शरेखा बंडल से जुड़ा होता है। एक वैश्विक खंड मौजूद होगा (परिभाषा के अनुसार) केवल तभी जब एम समानांतर हो, जो कि मजबूत स्थलीय प्रतिबंधों का तात्पर्य है।

संख्या सिद्धांत में एक क्षेत्र K (और अधिक सामान्य एबेलियन किस्म) पर परिभाषित अण्डाकार घटता E के लिए प्रमुख सजातीय स्थानों पर विचार करने का एक (सतही रूप से भिन्न) कारण है। एक बार जब यह समझ में आ गया तो अन्य बीजगणितीय समूहों के लिए शीर्षक के तहत कई अन्य उदाहरण एकत्र किए गए: ऑर्थोगोनल समूहों के लिए द्विघात रूप, और सेवेरी-ब्राउर किस्म | प्रक्षेपी रैखिक समूहों के लिए सेवेरी-ब्राउर किस्में दो हैं।

अंडाकार वक्र मामले में डायोफैंटिन समीकरणों के लिए रुचि का कारण यह है कि के बीजगणितीय रूप से बंद नहीं हो सकता है। ऐसे वक्र C मौजूद हो सकते हैं जिनके पास K पर परिभाषित कोई बिंदु नहीं है, और जो E के लिए एक बड़े क्षेत्र पर आइसोमोर्फिक बन जाते हैं, जिसकी परिभाषा के अनुसार इसके अतिरिक्त कानून के लिए पहचान तत्व के रूप में कार्य करने के लिए K पर एक बिंदु है। यही है, इस मामले के लिए हमें सी को अलग करना चाहिए जिसमें जीनस (गणित) 1 है, अंडाकार वक्र ई से जिसमें के-पॉइंट है (या, दूसरे शब्दों में, एक डायोफैंटिन समीकरण प्रदान करें जिसका समाधान के में है)। घटता C, E के ऊपर टॉर्सर्स बन जाता है, और इस मामले में एक समृद्ध संरचना वाला एक सेट बनाता है कि K एक संख्या क्षेत्र (सेल्मर समूह का सिद्धांत) है। वास्तव में 'Q' के ऊपर एक विशिष्ट समतल घन वक्र C के पास परिमेय बिंदु होने का कोई विशेष कारण नहीं है; मानक वीयरस्ट्रैस मॉडल हमेशा करता है, अर्थात् अनंत पर बिंदु, लेकिन आपको के पर उस रूप में सी डालने के लिए के पर एक बिंदु की आवश्यकता होती है।

इस सिद्धांत को स्थानीय विश्लेषण पर बहुत ध्यान देकर विकसित किया गया है, जिससे टेट-शफारेविच समूह की परिभाषा को बढ़ावा मिला है। सामान्य तौर पर टॉरसर सिद्धांत को लेने का दृष्टिकोण, बीजगणितीय रूप से बंद क्षेत्र पर आसान, और एक छोटे से क्षेत्र में 'नीचे' जाने की कोशिश करना वंश (श्रेणी सिद्धांत) का एक पहलू है। यह एक बार में गैलोइस कोहोलॉजी के प्रश्नों की ओर ले जाता है, क्योंकि टॉर्स समूह कोहोलॉजी एच में कक्षाओं का प्रतिनिधित्व करते हैं1</उप>।

अन्य उपयोग

एक प्रमुख सजातीय स्थान की अवधारणा को निम्नानुसार वैश्वीकृत भी किया जा सकता है। X को एक स्थान (एक योजना (गणित)/कई गुना/स्थलीय स्थान आदि) होने दें, और G को X पर एक समूह होने दें, अर्थात, X से अधिक रिक्त स्थान की श्रेणी (गणित) में एक समूह वस्तु। इस मामले में, एक (दाएं, कहते हैं) X पर G-torsor E एक (दाएं) G ग्रुप एक्शन (गणित) के साथ X के ऊपर एक स्थान E (उसी प्रकार का) है, जैसे कि आकृतिवाद

द्वारा दिए गए
उपयुक्त श्रेणी (गणित) में एक तुल्याकारिता है, और ऐसा कि E, X पर स्थानीय रूप से तुच्छ है, उसमें EX एक्स पर स्थानीय रूप से एक खंड प्राप्त करता है। इस अर्थ में टॉर्सर्स की आइसोमोर्फिज्म कक्षाएं सह-समरूपता समूह एच में कक्षाओं के अनुरूप हैं1(एक्स,जी).

जब हम स्मूथ मैनिफोल्ड कैटेगरी (गणित) में होते हैं, तब एक G-टॉर्सर (G a Lie समूह के लिए) ठीक एक प्रमुख G-प्रिंसिपल बंडल होता है, जैसा कि ऊपर परिभाषित किया गया है।

उदाहरण: यदि जी एक कॉम्पैक्ट लाई समूह (माना जाता है) है, तो वर्गीकरण स्थान पर एक G-torsor है .

यह भी देखें

  • सजातीय स्थान
  • ढेर (गणित)

टिप्पणियाँ

  1. S. Lang and J. Tate (1958). "एबेलियन किस्मों पर प्रमुख सजातीय स्थान". American Journal of Mathematics. 80 (3): 659–684. doi:10.2307/2372778.


अग्रिम पठन


बाहरी संबंध