क्षेत्रीय वेग

From Vigyanwiki
Revision as of 12:05, 10 April 2023 by alpha>Saurabh
क्षेत्रीय वेग वक्र da/dt=const (नीले रंग में दिखाया गया है) के साथ गतिमान कण के स्थिति सदिश द्वारा प्रति इकाई समय में निकाला गया क्षेत्र है।

मौलिक यांत्रिकी में, क्षेत्रीय वेग (जिसे सेक्टर वेग या सेक्टरियल वेग भी कहा जाता है) स्यूडोवेक्टर है जिसकी सदिश लंबाई परिवर्तन की दर (गणित) के सामान्य होती है, जिस पर कण द्वारा वक्र के साथ चलने पर क्षेत्र बह जाता है। संलग्न आकृति में, मान लीजिए कि कण नीले वक्र के साथ चलता है। निश्चित समय t पर, कण बिंदु B पर स्थित है, और थोड़ी देर बाद, समय t + Δt पर, कण बिंदु C पर चला गया है। कण द्वारा बह गया क्षेत्र (गणित) हरे रंग में छाया हुआ है आकृति, रेखाखंड AB और AC से घिरा है और वह वक्र जिसके साथ कण चलता है। क्षेत्रीय वेग परिमाण (अर्थात्, क्षेत्रीय गति) इस क्षेत्र का क्षेत्र समय अंतराल Δt से विभाजित होता है, इस सीमा में कि Δt गायब हो जाता है। वेक्टर दिशा को दाहिने हाथ के नियम के रूप में ज्ञात एक सम्मेलन के बाद कण की स्थिति और वेग वैक्टर वाले विमान के लिए सामान्य माना जाता है।

केप्लर के दूसरे कानून का चित्रण। ग्रह सूर्य के पास तेजी से चलता है, इसलिए निश्चित समय में वही क्षेत्र बह जाता है जो अधिक दूरी पर होता है, जहां ग्रह अधिक धीमी गति से चलता है।

क्षेत्रीय वेग कोणीय गति से निकटता से संबंधित है। किसी भी वस्तु की उत्पत्ति के बारे में कक्षीय कोणीय गति होती है, और यह गुणनात्मक अदिश स्थिरांक तक, उसी मूल के बारे में वस्तु के क्षेत्रीय वेग के सामान्य होती है। कोणीय संवेग का महत्वपूर्ण गुण यह है कि इसे केंद्रीय बलों की कार्रवाई के तहत संरक्षित किया जाता है (अर्थात मूल की ओर या दूर रेडियल रूप से कार्य करने वाली शक्तियाँ) है। ऐतिहासिक रूप से, कोणीय संवेग के संरक्षण का नियम पूरी तरह से क्षेत्रीय वेग के संदर्भ में बताया गया था। इसका विशेष स्थिति केपलर का दूसरा नियम है, जो बताता है कि सूर्य की उत्पत्ति के साथ ग्रह का क्षेत्रीय वेग समय के साथ स्थिर है। क्योंकि किसी ग्रह पर कार्यरत गुरुत्वाकर्षण बल लगभग केंद्रीय बल है (चूंकि ग्रह का द्रव्यमान सूर्य की तुलना में छोटा है), ग्रह का कोणीय संवेग (और इसलिए क्षेत्रीय वेग) स्थिर रहना चाहिए (लगभग) . आइजैक न्यूटन केप्लर के दूसरे नियम के गतिशील महत्व को पहचानने वाले पहले वैज्ञानिक थे। गति के अपने नियमों की सहायता से, उन्होंने 1684 में सिद्ध किया कि कोई भी ग्रह जो निश्चित केंद्र की ओर आकर्षित होता है, समान समय अंतराल में समान क्षेत्रों को पार करता है। इस कारण से, कोणीय संवेग के संरक्षण के नियम को ऐतिहासिक रूप से समान क्षेत्रों का सिद्धांत कहा जाता था। कोणीय संवेग के संरक्षण के नियम को बाद में विस्तारित किया गया और अधिक जटिल स्थितियों के लिए सामान्यीकृत किया गया जो क्षेत्रीय वेग की अवधारणा के माध्यम से आसानी से वर्णित नहीं किया जा सकता। चूंकि कोणीय संवेग के संरक्षण के नियम के आधुनिक रूप में केवल केपलर के दूसरे नियम की तुलना में बहुत अधिक सम्मिलित हैं, आधुनिक कार्यों में समान क्षेत्रों के पदनाम सिद्धांत को हटा दिया गया है।

अलग-अलग सनकीपन वाले ग्रहों की कक्षाएँ। लाल किरण एक स्थिर कोणीय वेग और समान कक्षीय समय के साथ घूमती हैperiod as the planet, .

S: प्राथमिक फ़ोकस पर सूर्य, C: दीर्घवृत्त का केंद्र, S': द्वितीयक फ़ोकस।

प्रत्येक स्थितियों में, दर्शाए गए सभी क्षेत्रों का क्षेत्र समान है।

निम्न उच्च
ग्रह एक गोलाकार कक्षा में सूर्य की परिक्रमा करता है (e=0.0)
ग्रह सूर्य की कक्षा में ई = 0.5 के साथ परिक्रमा करता है
e=0.2 के साथ एक कक्षा में सूर्य की परिक्रमा करने वाला ग्रह
ग्रह सूर्य की कक्षा में e=0.8 के साथ परिक्रमा करता है

मौलिक इलेक्ट्रोडायनामिक्स में क्षेत्रीय वेग भी चुंबकीय द्विध्रुव की अवधारणा से निकटता से संबंधित है। प्रत्येक विद्युत प्रवाह में (छद्म) सदिश मात्रा होती है जिसे किसी दिए गए मूल के बारे में चुंबकीय द्विध्रुवीय क्षण कहा जाता है। विशेष स्थितियों में कि वर्तमान में एकल गतिमान बिंदु आवेश होता है, किसी भी मूल के बारे में चुंबकीय द्विध्रुवीय क्षण, स्केलर कारक तक, उसी मूल के बारे में आवेश के क्षेत्रीय वेग के सामान्य होता है। अधिक सामान्य स्थितियों में जहां करंट में गतिमान बिंदु आवेशों की बड़ी किन्तु परिमित संख्या होती है, चुंबकीय द्विध्रुवीय क्षण प्रत्येक आवेशों के द्विध्रुवीय क्षणों का योग होता है, और इसलिए, क्षेत्रीय वेगों के योग के समानुपाती होता है निरंतरता की सीमा में जहां धारा में आवेशों की संख्या अनंत हो जाती है, योग अभिन्न अंग बन जाता है; जिससे , किसी दिए गए मूल के बारे में सतत धारा का चुंबकीय द्विध्रुवीय क्षण, अदिश कारक तक, वर्तमान पथ के साथ क्षेत्रीय वेग के अभिन्न अंग के सामान्य होता है। यदि वर्तमान पथ बंद लूप होता है और यदि लूप में सभी बिंदुओं पर करंट समान होता है, तो यह इंटीग्रल चुने हुए मूल से स्वतंत्र हो जाता है, जिससेचुंबकीय द्विध्रुवीय क्षण वर्तमान लूप से जुड़ा एक मूलभूत स्थिरांक बन जाए।

कोणीय गति के साथ संबंध

पहली आकृति की स्थिति में, कण द्वारा समयावधि Δt के समय निकाला गया क्षेत्रफल त्रिभुज ABC के क्षेत्रफल के लगभग सामान्य है। जैसे-जैसे Δt शून्य की ओर अग्रसर होता है, यह निकट-समानता किसी फलन की सीमा के रूप में स्पष्ट हो जाती है।

बिंदु D को आकृति में दिखाए गए समांतर चतुर्भुज ABDC का चौथा कोना होने दें, जिससे सदिश AB और AC समांतर चतुर्भुज नियम द्वारा सदिश AD में जुड़ जाएँ। तब त्रिभुज ABC का क्षेत्रफल समांतर चतुर्भुज ABDC के क्षेत्रफल का आधा होता है, और ABDC का क्षेत्रफल सदिश AB और AC के क्रॉस उत्पाद के परिमाण के सामान्य होता है। इस क्षेत्र को इस परिमाण के साथ (छद्म) वेक्टर के रूप में भी देखा जा सकता है, और समांतर चतुर्भुज (दाहिने हाथ के नियम के बाद) के लंबवत दिशा में इंगित करता है; यह वेक्टर क्रॉस उत्पाद ही है:

इस तरह
क्षेत्रीय वेग यह सदिश क्षेत्र है जिसे Δt द्वारा इस सीमा में विभाजित किया जाता है कि Δt लुप्त हो जाता है:
किन्तु , वेग वेक्टर है गतिमान कण का, जिससे
दूसरी ओर, कण का कोणीय संवेग है

और इसलिए कोणीय गति क्षेत्रीय वेग के 2m गुना के सामान्य होती है।

क्षेत्रीय वेग का संरक्षण मौलिक केंद्रीय-बल समस्या का सामान्य गुण है,[1] और, मौलिक यांत्रिकी के संदर्भ में, कोणीय गति के संरक्षण के सामान्य है।

यह भी देखें

संदर्भ

  1. Houde, Martin (November 10, 2005). "Chapter 6. Central Force Motion" (PDF). Physics 350/Applied Math 353 Classical Mechanics I. Western University. Retrieved October 15, 2021.


अग्रिम पठन