आघूर्णजनक फलन

From Vigyanwiki
Revision as of 16:19, 21 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Concept in probability theory and statistics}} संभाव्यता सिद्धांत और सांख्यिकी में, वास...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का क्षण-उत्पन्न करने वाला कार्य इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व कार्यों या संचयी वितरण कार्यों के साथ सीधे काम करने की तुलना में विश्लेषणात्मक परिणामों के वैकल्पिक मार्ग का आधार प्रदान करता है। यादृच्छिक चर के भारित रकम द्वारा परिभाषित वितरण के क्षण-उत्पन्न कार्यों के लिए विशेष रूप से सरल परिणाम हैं। हालाँकि, सभी यादृच्छिक चरों में क्षण-उत्पन्न करने वाले कार्य नहीं होते हैं।

जैसा कि इसके नाम से पता चलता है, जनरेटिंग फ़ंक्शन का उपयोग डिस्ट्रीब्यूशन के मोमेंट (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में nth मोमेंट मोमेंट-जेनरेटिंग फ़ंक्शन का n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0.

वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के अलावा, क्षण-उत्पन्न करने वाले कार्यों को वेक्टर- या मैट्रिक्स-मूल्यवान यादृच्छिक चर के लिए परिभाषित किया जा सकता है, और यहां तक ​​कि अधिक सामान्य मामलों में भी बढ़ाया जा सकता है।

विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का क्षण-उत्पन्न करने वाला कार्य हमेशा मौजूद नहीं होता है। वितरण के क्षण-सृजन समारोह के व्यवहार और वितरण के गुणों के बीच संबंध हैं, जैसे कि क्षणों का अस्तित्व।

परिभाषा

होने देना संचयी वितरण समारोह के साथ एक यादृच्छिक चर हो . का क्षण उत्पन्न करने वाला कार्य (mgf)। (या ), द्वारा चिह्नित , है

बशर्ते यह अपेक्षित मूल्य मौजूद हो कुछ पड़ोस (गणित) में 0. यानी एक है ऐसा कि सभी के लिए में , मौजूद। यदि अपेक्षा 0 के पड़ोस में मौजूद नहीं है, तो हम कहते हैं कि क्षण उत्पन्न करने वाला कार्य मौजूद नहीं है।[1] दूसरे शब्दों में, X का क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर का अपेक्षित मान है . अधिक आम तौर पर, कब , एक -आयामी यादृच्छिक वेक्टर, और एक निश्चित वेक्टर है, एक उपयोग करता है के बजाय:

हमेशा मौजूद होता है और 1 के बराबर होता है। हालांकि, क्षण-सृजन कार्यों के साथ एक महत्वपूर्ण समस्या यह है कि क्षण और क्षण-सृजन कार्य मौजूद नहीं हो सकते हैं, क्योंकि इंटीग्रल को पूरी तरह से अभिसरण करने की आवश्यकता नहीं है। इसके विपरीत, विशेषता कार्य (संभाव्यता सिद्धांत) या फूरियर रूपांतरण हमेशा मौजूद होता है (क्योंकि यह परिमित माप (गणित) के स्थान पर एक बंधे हुए कार्य का अभिन्न अंग है), और इसके बजाय कुछ उद्देश्यों के लिए इसका उपयोग किया जा सकता है।

क्षण-उत्पन्न करने वाले फ़ंक्शन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के क्षणों को खोजने के लिए किया जा सकता है।[2] श्रृंखला का विस्तार है

इस तरह

कहाँ है पल (गणित)। भेदभाव बार के संबंध में और सेटिंग , हम प्राप्त करते हैं वें क्षण उत्पत्ति के बारे में, ; क्षण-उत्पन्न करने का कार्य देखें # नीचे क्षणों की गणना।

अगर एक सतत यादृच्छिक चर है, इसके क्षण-उत्पन्न करने वाले कार्य के बीच निम्नलिखित संबंध और इसके प्रायिकता घनत्व फलन का दो तरफा लाप्लास रूपांतरण रखती है:

चूँकि PDF का दो तरफा लाप्लास परिवर्तन इस रूप में दिया गया है

और क्षण-उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम द्वारा) तक विस्तृत होती है

यह की विशेषता कार्य के अनुरूप है का एक बाती का घूमना होना जब क्षण उत्पन्न करने वाला कार्य मौजूद होता है, एक निरंतर यादृच्छिक चर के विशिष्ट कार्य के रूप में इसके प्रायिकता घनत्व फलन का फूरियर रूपांतरण है , और सामान्य तौर पर जब कोई फ़ंक्शन घातीय क्रम का है, का फूरियर रूपांतरण अभिसरण के क्षेत्र में इसके दो तरफा लाप्लास परिवर्तन का एक विक रोटेशन है। अधिक जानकारी के लिए फूरियर ट्रांसफॉर्म#लाप्लास ट्रांसफॉर्म देखें।

उदाहरण

यहाँ क्षण-सृजन फलन और तुलना के लिए अभिलाक्षणिक फलन के कुछ उदाहरण दिए गए हैं। यह देखा जा सकता है कि विशिष्ट कार्य क्षण-उत्पन्न करने वाले कार्य का एक विक रोटेशन है जब बाद वाला मौजूद है।

Distribution Moment-generating function Characteristic function
Degenerate
Bernoulli
Geometric
Binomial
Negative binomial
Poisson
Uniform (continuous)
Uniform (discrete)
Laplace
Normal
Chi-squared
Noncentral chi-squared
Gamma
Exponential
Beta (see Confluent hypergeometric function)
Multivariate normal
Cauchy Does not exist Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:40"): {\displaystyle e^{it\mu - \theta|t|}</ गणित> |- |[[बहुभिन्नरूपी कॉची वितरण]] गणित>\operatorname {MultiCauchy}(\mu, \Sigma)} [3] मौजूद नहीं है

गणना

क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर के एक कार्य की अपेक्षा है, इसे इस प्रकार लिखा जा सकता है:

  • असतत संभाव्यता द्रव्यमान समारोह के लिए,
  • सतत प्रायिकता घनत्व फलन के लिए,
  • सामान्य मामले में: , रीमैन-स्टिएल्टजेस इंटीग्रल का उपयोग करके, और कहाँ संचयी वितरण समारोह है। यह केवल लाप्लास-स्टील्टजेस का रूपांतरण है , लेकिन तर्क के संकेत के साथ उलट गया।

ध्यान दें कि उस मामले के लिए जहां एक सतत संभावना घनत्व समारोह है , का दो तरफा लाप्लास रूपांतर है .

कहाँ है वें क्षण (गणित)।

यादृच्छिक चर के रैखिक परिवर्तन

यदि यादृच्छिक चर क्षण उत्पन्न करने वाला कार्य है , तब क्षण उत्पन्न करने वाला कार्य है


स्वतंत्र यादृच्छिक चर का रैखिक संयोजन

अगर , जहां एक्सi स्वतंत्र यादृच्छिक चर हैं और एi स्थिरांक हैं, तो S के लिए प्रायिकता घनत्व फलनn एक्स में से प्रत्येक के प्रायिकता घनत्व कार्यों का कनवल्शन हैi, और एस के लिए क्षण-उत्पन्न करने वाला कार्यn द्वारा दिया गया है


वेक्टर-मूल्यवान यादृच्छिक चर

यादृच्छिक वेक्टर के लिए | वेक्टर-मूल्यवान यादृच्छिक चर वास्तविक संख्या घटकों के साथ, क्षण-उत्पन्न करने वाला कार्य किसके द्वारा दिया जाता है

कहाँ एक वेक्टर है और डॉट उत्पाद है।

महत्वपूर्ण गुण

क्षण उत्पन्न करने वाले कार्य सकारात्मक और लघुगणकीय रूप से उत्तल कार्य हैं। लॉग-उत्तल, एम (0) = 1 के साथ।

क्षण-सृजन समारोह की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, अगर और दो यादृच्छिक चर हैं और t के सभी मानों के लिए,

तब

x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है यदि दो वितरणों के आघूर्ण समान हैं, तो वे सभी बिंदुओं पर समान हैं। ऐसा इसलिए है क्योंकि कुछ मामलों में, क्षण मौजूद होते हैं और फिर भी क्षण-उत्पन्न करने वाला कार्य नहीं होता है, क्योंकि सीमा

मौजूद नहीं हो सकता है। लॉग-सामान्य वितरण इसका एक उदाहरण है जब ऐसा होता है।


क्षणों की गणना

मोमेंट-जेनरेटिंग फ़ंक्शन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर मौजूद है, तो यह प्रायिकता वितरण के पल (गणित) का घातीय जनरेटिंग फ़ंक्शन है:

अर्थात्, n एक गैर-ऋणात्मक पूर्णांक होने के साथ, 0 के बारे में nवाँ क्षण क्षण उत्पन्न करने वाले फलन का nवाँ व्युत्पन्न है, जिसका मूल्यांकन t = 0 पर किया जाता है।

अन्य गुण

जेन्सेन की असमानता क्षण-उत्पन्न करने वाले कार्य पर एक साधारण निचली सीमा प्रदान करती है:

कहाँ X का माध्य है।

एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ क्षण-उत्पन्न करने वाले फ़ंक्शन का उपयोग किया जा सकता है। इस कथन को Chernoff बाध्य भी कहा जाता है। तब से के लिए नीरस रूप से बढ़ रहा है , अपने पास

किसी के लिए और कोई भी, प्रदान किया गया मौजूद। उदाहरण के लिए, जब X एक मानक सामान्य वितरण है और , हम चुन सकते हैं और याद करो . यह देता है , जो सटीक मान के 1+a के कारक के भीतर है।

हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के मामले में क्षण-उत्पन्न करने वाले फ़ंक्शन पर सीमाएं प्रदान करते हैं।

कब गैर-ऋणात्मक है, क्षण उत्पन्न करने वाला कार्य क्षणों पर एक सरल, उपयोगी सीमा देता है:

किसी के लिए और .

यह असमानता से अनुसरण करता है जिसमें हम स्थानापन्न कर सकते हैं तात्पर्य किसी के लिए . अब अगर और , इसे पुनर्व्यवस्थित किया जा सकता है . अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है के अनुसार .

एक उदाहरण के रूप में विचार करें साथ स्वतंत्रता की कोटियां। फिर मोमेंट-जेनरेटिंग फंक्शन से # उदाहरण . उठा और बाध्य में प्रतिस्थापन:

हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय क्षण सही सीमा है . सीमाओं की तुलना करने के लिए, हम बड़े पैमाने पर स्पर्शोन्मुखता पर विचार कर सकते हैं . यहां क्षण-उत्पन्न करने वाला कार्य बाध्य है , जहां वास्तविक सीमा है . इस प्रकार इस मामले में क्षण-उत्पन्न करने वाला कार्य बहुत मजबूत है।

अन्य कार्यों से संबंध

क्षण-सृजन समारोह से संबंधित कई अन्य अभिन्न परिवर्तन हैं जो संभाव्यता सिद्धांत में आम हैं:

विशेषता कार्य (संभाव्यता सिद्धांत): विशेषता कार्य (संभावना सिद्धांत) के माध्यम से क्षण-सृजन समारोह से संबंधित है चारित्रिक फलन iX का क्षण-उत्पन्न करने वाला फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फ़ंक्शन को संभाव्यता घनत्व फ़ंक्शन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण द्वारा इससे निकाला जा सकता है। संचयी-जनन समारोह: क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन को संभाव्यता पैदा करने वाला कार्य के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके बजाय क्यूम्यलेंट-जनरेटिंग फ़ंक्शन को विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के लघुगणक के रूप में परिभाषित करते हैं, जबकि अन्य इसे बाद वाले को दूसरा क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन कहते हैं। प्रायिकता-उत्पन्न करने वाला कार्य: संभाव्यता-उत्पन्न करने वाले कार्य को इस रूप में परिभाषित किया गया है इसका तुरंत तात्पर्य है


यह भी देखें

संदर्भ

उद्धरण

  1. Casella, George; Berger, Roger L. (1990). सांख्यिकीय निष्कर्ष. Wadsworth & Brooks/Cole. p. 61. ISBN 0-534-11958-1.
  2. Bulmer, M. G. (1979). सांख्यिकी के सिद्धांत. Dover. pp. 75–79. ISBN 0-486-63760-3.
  3. Kotz et al.[full citation needed] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution


स्रोत

  • Casella, George; Berger, Roger (2002). सांख्यिकीय निष्कर्ष (2nd ed.). pp. 59–68. ISBN 978-0-534-24312-8.


श्रेणी:पल (गणित) श्रेणी:उत्पन्न कार्य