विरिअल गुणांक
विरिअल गुणांक घनत्व की शक्तियों में बहुत से कण प्रणाली के दबाव के विरिअल विस्तार में गुणांक के रूप में दिखाई देते हैं। आदर्श गैस कानून को व्यवस्थित सुधार प्रदान करते हैं। वे कणों के बीच संपर्क क्षमता की विशेषता हैं और सामान्यतः तापमान पर निर्भर करते हैं। दूसरा विरिअल गुणांक कणों के बीच केवल जोड़ी बातचीत पर निर्भर करता है। तीसरा () 2- और गैर-योगात्मक 3-बॉडी इंटरैक्शन पर निर्भर करता है, और इसी तरह।
व्युत्पत्ति
विरिअल गुणांकों के लिए एक बंद अभिव्यक्ति प्राप्त करने में पहला कदम एक क्लस्टर विस्तार है[1] विभाजन समारोह की (सांख्यिकीय यांत्रिकी)
यहाँ दबाव है। कणों से युक्त बर्तन का आयतन है। बोल्ट्जमैन स्थिरांक है। परम तापमान है। के साथ उग्रता है। रासायनिक क्षमता मात्रा के उपतंत्र का विभाजन फलन (सांख्यिकीय यांत्रिकी) फलन है कण:
यहाँ के सब प्रणाली का हैमिल्टनियन (ऊर्जा संचालिका) है कण। हैमिल्टनियन कणों और कुल की गतिज ऊर्जा का योग है -पार्टिकल संभावित ऊर्जा (इंटरैक्शन एनर्जी)। उत्तरार्द्ध में जोड़ी इंटरैक्शन और संभवतः 3-बॉडी और हायर-बॉडी इंटरैक्शन सम्मिलित हैं। ग्रैंड विभाजन समारोह एक-शरीर, दो-निकाय आदि समूहों से योगदान की राशि में विस्तार किया जा सकता है। इस विस्तार से विरिअल विस्तार को देखकर प्राप्त किया जाता है। के बराबर होती है . इस प्रकार एक प्राप्त होता है
- .
ये क्वांटम-सांख्यिकीय भाव हैं। जिनमें गतिज ऊर्जा होती है। ध्यान दें कि कण विभाजन कार्य करता है। केवल एक गतिज ऊर्जा शब्द होता है। शास्त्रीय सीमा में संभावित ऑपरेटरों के साथ गतिज ऊर्जा संचालक कम्यूटेटर और अंश और भाजक में गतिज ऊर्जा पारस्परिक रूप से निरस्त हो जाती है। ट्रेस (रैखिक बीजगणित) (tr) विन्यास स्थान पर अभिन्न अंग बन जाता है। यह इस प्रकार है कि शास्त्रीय विरिअल गुणांक केवल कणों के बीच की बातचीत पर निर्भर करते हैं और कण निर्देशांक पर इंटीग्रल के रूप में दिए जाते हैं।
से अधिक की व्युत्पत्ति विरिअल गुणांक जल्दी से एक जटिल दहनशील समस्या बन जाता है। शास्त्रीय पास-पास बनाना और
गैर-योगात्मक अंतःक्रियाओं (यदि मौजूद है) की उपेक्षा करते हुए संयोजक को ग्राफिक रूप से नियंत्रित किया जा सकता है। जैसा कि पहले जोसेफ ई. मेयर और मारिया गोएपर्ट-मेयर द्वारा दिखाया गया था।[2]
उन्होंने पेश किया जिसे अब मेयर समारोह के रूप में जाना जाता है:
और इन कार्यों के संदर्भ में क्लस्टर विस्तार लिखा। यहाँ कण 1 और 2 (जो समान कण माने जाते हैं) के बीच अन्योन्यक्रिया क्षमता है।
रेखांकन के संदर्भ में परिभाषा
विरिअल गुणांक इरेड्यूसिबल मेयर क्लस्टर इंटीग्रलस से संबंधित हैं। द्वारा
उत्तरार्द्ध को रेखांकन के संदर्भ में संक्षिप्त रूप से परिभाषित किया गया है।
इन रेखांकन को समाकलन में बदलने का नियम इस प्रकार है:
- एक ग्राफ लें और शीर्ष को इसके सफेद शीर्ष पर लेबल करें और शेष काले शीर्षों के साथ .
- उस कण से जुड़ी स्वतंत्रता की निरंतर डिग्री का प्रतिनिधित्व करते हुए प्रत्येक शीर्ष पर लेबल वाले समन्वय k को संबद्ध करें। निर्देशांक 0 सफेद शीर्ष के लिए आरक्षित है।
- दो शीर्षों को जोड़ने वाले प्रत्येक बंधन के साथ मेयर एफ-फंक्शन इंटरपार्टिकल क्षमता के अनुरूप होता है।
- ब्लैक वर्टिकल को सौंपे गए सभी निर्देशांकों को एकीकृत करें।
- ग्राफ के समरूपता संख्या के साथ अंतिम परिणाम को गुणा करें जो काले लेबल वाले शीर्षों के क्रमपरिवर्तन की संख्या के व्युत्क्रम के रूप में परिभाषित किया गया है। जो ग्राफ को स्थैतिक रूप से अपरिवर्तनीय छोड़ देता है।
पहले दो क्लस्टर इंटीग्रल हैं
दूसरे विरिअल गुणांक की अभिव्यक्ति इस प्रकार है:
जहां कण 2 को मूल को परिभाषित करने के लिए मान लिया गया था (). दूसरे विरिअल गुणांक के लिए यह शास्त्रीय अभिव्यक्ति पहली बार लियोनार्ड ऑर्स्टीन द्वारा 1908 में लीडेन विश्वविद्यालय पीएच.डी. में ली गई थी। थीसिस।
यह भी देखें
- बॉयल तापमान - तापमान जिस पर दूसरा विरिअल गुणांक गायब हो जाती
- अधिक संपत्ति
- संपीड़न कारक
संदर्भ
- ↑ Hill, T. L. (1960). सांख्यिकीय ऊष्मप्रवैगिकी का परिचय. Addison-Wesley. ISBN 9780201028409.
- ↑ Mayer, J. E.; Goeppert-Mayer, M. (1940). सांख्यिकीय यांत्रिकी. New York: Wiley.
अग्रिम पठन
- Dymond, J. H.; Smith, E. B. (1980). The Virial Coefficients of Pure Gases and Mixtures: a Critical Compilation. Oxford: Clarendon. ISBN 0198553617.
- Hansen, J. P.; McDonald, I. R. (1986). The Theory of Simple Liquids (2nd ed.). London: Academic Press. ISBN 012323851X.
- http://scitation.aip.org/content/aip/journal/jcp/50/10/10.1063/1.1670902
- http://scitation.aip.org/content/aip/journal/jcp/50/11/10.1063/1.1670994
- Reid, C. R., Prausnitz, J. M., Poling B. E., Properties of gases and liquids, IV edition, Mc Graw-Hill, 1987