आधार फलन
गणित में,आईएसओआधार फलन एक फलन स्थान के लिएआईएसओविशेष आधार (रैखिक बीजगणित) काआईएसओतत्व है। समारोह स्थान में प्रत्येक फ़ंक्शन (गणित) को आधार फ़ंक्शंस के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थल में प्रत्येक वेक्टर को आधार वैक्टर के रैखिक संयोजन के रूप में दर्शाया जा सकता है।
संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर) डेटा अंक)।
उदाहरण
सी के लिए मोनोमियल आधारω
विश्लेषणात्मक कार्यों के वेक्टर स्थान के लिए एकपद आधार दिया गया है
बहुपदों के लिए एकपदी आधार
मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिएआईएसओआधार बनाता है। आखिरकार, हर बहुपद को इस रूप में लिखा जा सकता है कुछ के लिए , जो कि मोनोमियल्स काआईएसओरैखिक संयोजन है।
एल के लिए फूरियर आधार2[0,1]
त्रिकोणमितीय फ़ंक्शनआईएसओबंधे हुए डोमेन पर स्क्वायर-इंटीग्रेबल फ़ंक्शन के लिएआईएसओ(orthonormality) स्कॉडर आधार बनाते हैं।आईएसओविशेष उदाहरण के रूप में, संग्रह
यह भी देखें
- आधार (रैखिक बीजगणित) (हैमेल आधार)
- शाउडर आधार (बनच स्थान में)
- दोहरा आधार
- बायोर्थोगोनल प्रणाली (मार्कुशेविच आधार)
- आंतरिक-उत्पाद स्थान में ऑर्थोनॉर्मल आधार
- ओर्थोगोनल बहुपद
- फूरियर विश्लेषण और फूरियर श्रृंखला
- हार्मोनिक विश्लेषण
- ऑर्थोगोनल वेवलेट
- बायोर्थोगोनल वेवलेट
- चमकीले आधार की क्रिया
- परिमित तत्व विश्लेषण#एक आधार चुनना|परिमित-तत्व (आधार)
- कार्यात्मक विश्लेषण
- सन्निकटन सिद्धांत
- संख्यात्मक विश्लेषण
संदर्भ
- Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.