साइनसॉइडल मॉडल
आँकड़ों में, संकेत आगे बढ़ाना और समय श्रृंखला विश्लेषण में, एक साइनसॉइडल मॉडल (ज्यावक्रीय नमूना) का उपयोग अनुक्रम 'Y' (वाई) को अनुमानित करने के लिए किया जाता हैi एक साइन (द्विज्या( समारोह के लिए:
जहाँ C एक औसत स्तर को परिभाषित करता है, α साइन के लिए एक आयाम है, ω कोणीय आवृत्ति है, Tiएक समय चर है, φ चरण-शिफ्ट है, और ईi त्रुटि क्रम है।
यह ज्यावक्रीय नमूना अरैखिक न्यूनतम वर्गों का उपयोग करके उपयुक्त किया जा सकता है; एक अच्छा उपयुक्त प्राप्त करने के लिए, चाल को अज्ञात पैरामीटर के लिए अच्छे प्रारंभिक मानों की आवश्यकता हो सकती है। एकल साइनसॉइड (शिरानालाभ) के साथ एक नमूना को उपयुक्त करना वर्णक्रमीय घनत्व अनुमान और कम से कम वर्ग वर्णक्रमीय विश्लेषण का एक विशेष मामला है।
अच्छे शुरुआती मूल्य
माध्य के लिए अच्छा प्रारंभिक मूल्य
आंकड़े के माध्य की गणना करके C के लिए एक अच्छा प्रारंभिक मान प्राप्त किया जा सकता है। यदि आंकड़े एक प्रवृत्ति अनुमान दिखाता है, अर्थात, स्थिर स्थान की धारणा का उल्लंघन किया जाता है, तो कोई C को रैखिक या द्विघात कम से कम वर्गों के साथ बदल सकता है। यानी नमूना बन जाता है
या
आवृत्ति के लिए अच्छा शुरुआती मूल्य
आवृत्ति के लिए शुरुआती मान एक पीरियोग्राम ( आवर्तिता वक्र) में प्रमुख आवृत्ति से प्राप्त किया जा सकता है। आवृत्ति के लिए इस प्रारंभिक अनुमान को परिष्कृत करने के लिए एक जटिल डिमॉड्यूलेशन (डिमोड्यूलेशन मोडेम से प्राप्त ऎनालॉग आंकड़े को कुंजी आंकड़े मे बदलने की प्रक्रिया डिमोड्यूलेशन कहलाती है।) चरण रूप रेखा का उपयोग किया जा सकता है।
आयाम के लिए अच्छा प्रारंभिक मान
साइनसॉइड (शिरानालाभ) आयाम का अनुमान प्राप्त करने के लिए बिगड़े हुए आंकड़े के मूल माध्य वर्ग को दो के वर्गमूल से बढ़ाया जा सकता है। आयाम के लिए एक अच्छा प्रारंभिक मूल्य खोजने के लिए एक जटिल डिमॉड्यूलेशन (डिमोड्यूलेशन मोडेम से प्राप्त ऎनालॉग आंकड़े को कुंजी आंकड़े मे बदलने की प्रक्रिया डिमोड्यूलेशन कहलाती है।) आयाम रूप रेखा का उपयोग किया जा सकता है। इसके अलावा, यह रूप रेखा इंगित कर सकता है कि आंकड़े की संपूर्ण सीमा पर आयाम स्थिर है या नहीं या यदि यह भिन्न होता है। यदि भूखंड अनिवार्य रूप से सपाट है, अर्थात शून्य ढलान है, तो गैर-रैखिक नमूना में एक निरंतर आयाम मान लेना उचित है। हालाँकि, यदि ढलान भूखंड की सीमा से भिन्न होता है, तो किसी को नमूना को समायोजित करने की आवश्यकता हो सकती है:
अर्थात्, α को समय के फलन से प्रतिस्थापित किया जा सकता है। उपरोक्त नमूना में एक रैखिक उपयुक्त निर्दिष्ट किया गया है, लेकिन यदि आवश्यक हो तो इसे अधिक विस्तृत फ़ंक्शन के साथ बदला जा सकता है।
नमूना सत्यापन
किसी भी सांख्यिकीय नमूना के साथ, उपयुक्त को नमूना सत्यापन के चित्रमय और मात्रात्मक तकनीकों के अधीन होना चाहिए। उदाहरण के लिए, स्थान, पैमाने, प्रारंभन प्रभाव और बाहरी कारकों के कारण में महत्वपूर्ण बदलावों की जाँच करने के लिए एक रन सीक्वेंस प्लॉट ( अवधि अनुक्रम रूप रेखा)। त्रुटियों को सत्यापित करने के लिए एक अंतराल साजिश का उपयोग किया जा सकता है और आंकड़ों में अवशिष्ट स्वतंत्र होते हैं। बाहरी अंतराल की रूप रेखा में भी दिखाई देते हैं, और अवशेषों में तिरछापन या अन्य गैर-सामान्य वितरण की जांच करने के लिए एक हिस्टोग्राम (आयतचित्र) और सामान्य संभावना रूप रेखा।
विस्तारण
सुविधाजनक अभिन्न समीकरण के लिए गैर-रैखिक प्रतिगमन को एक रेखीय प्रतिगमन में बदलने के लिए एक अलग विधि शामिल है। फिर, प्रारंभिक अनुमान की कोई आवश्यकता नहीं है और पुनरावृत्त प्रक्रिया की कोई आवश्यकता नहीं है: उपयुक्त सीधे प्राप्त की जाती है।[1]
यह भी देखें
- ( प्रकाष्ठा खोज विधि संसूचक) पिच डिटेक्शन एल्गोरिदम
- स्पेक्ट्रल घनत्व अनुमान#एकल स्वर
संदर्भ
बाहरी संबंध
This article incorporates public domain material from the National Institute of Standards and Technology.