माइक्रोबियल कंसोर्टियम
एक सूक्ष्मजीव कंसोर्टियम या माइक्रोबियल समुदाय, सिम्बायोसिस में रहने वाले दो या दो से अधिक जीवाणु या माइक्रोबियल समूह हैं।[1][2] कंसोर्टियम endosymbiont या बाह्य सहजीवन हो सकते हैं, या कभी-कभी दोनों हो सकते हैं। प्रोटिस्ट मिक्सोट्रिचा विरोधाभास, जो खुद मास्टोटर्मेस डार्विनिएन्सिस दीमक का एक एंडोसिम्बियोनेट है, हमेशा कम से कम एक एंडोसिम्बायोटिक कोकस, कशाभिका या सरोम बैक्टीरिया की कई एक्टोसिम्बायोटिक प्रजातियों के संघ के रूप में पाया जाता है, और हेलिकल ट्रेपोनिमा बैक्टीरिया की कम से कम एक प्रजाति होती है जो इसका आधार बनाती है। मिक्सोट्रिचा प्रोटिस्ट्स लोकोमोशन।[3] कंसोर्टियम की अवधारणा पहली बार 1872 में जोहान्स रिंकी द्वारा पेश की गई थी।[4][5] और 1877 में सहजीवन शब्द पेश किया गया और बाद में इसका विस्तार किया गया। रोगाणुओं के बीच सहजीवन के लिए साक्ष्य दृढ़ता से सुझाव देते हैं कि यह भूमि पौधों के विकास और समुद्र में अल्गल समुदायों से उनके संक्रमण के लिए एक आवश्यक अग्रदूत रहा है।[6]
सिंहावलोकन
फ़ाइल: अरबिडोप्सिस थालियाना की जड़ों पर स्वाभाविक रूप से बनने वाला माइक्रोबियल कंसोर्टिया। वेबप|थंब|अपराइट=1.7|
on the roots of Arabidopsis thaliana
जड़ों पर बनने वाले जटिल माइक्रोबियल नेटवर्क को दिखाते हुए प्राकृतिक ए. थालियाना आबादी से जड़ सतहों की स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी तस्वीरें।
a) एक अरबिडोप्सिस थालियाना|ए का अवलोकन। थलियाना रूट (प्राथमिक जड़) कई जड़ बालों के साथ। बी) बायोफिल्म | बायोफिल्म बनाने वाले बैक्टीरिया। ग) जड़ की सतह के चारों ओर फफूंद या ओमीसाइकेट हाईफे । d) प्राथमिक जड़ बीजाणुओं और protist ों से सघन रूप से ढकी होती है। ई, एफ) प्रोटिस्ट, सबसे अधिक संभावना बैरीलेिरफेिशए वर्ग से संबंधित हैं। जी) बैक्टीरिया और फिलामेंटस बैक्टीरिया। h, i) विभिन्न जीवाणु व्यक्ति आकार और रूपात्मक विशेषताओं की महान किस्मों को दिखाते हैं।[7]अपघटन के प्रतिरोधी पदार्थों से निपटने के दौरान सूक्ष्मजीवों में बायोप्रोसेस की दक्षता बढ़ाने के लिए आशाजनक अनुप्रयोग क्षमता होती है।[8][9] बड़ी संख्या में सूक्ष्मजीवों को लिग्नोसेल्युलोज और पॉलीयुरेथेन जैसे पुनर्गणना सामग्री को नीचा दिखाने की उनकी क्षमता के आधार पर अलग किया गया है।[10][11] गिरावट दक्षता के कई मामलों में, एकल उपभेदों की तुलना में माइक्रोबियल कंसोर्टिया को बेहतर पाया गया है।[12] उदाहरण के लिए, ब्रेविबैसिलस एसपीपी का उपन्यास थर्मोफिलिक कंसोर्टिया। और एन्यूरिनिबैसिलस एसपी। बहुलक क्षरण को बढ़ाने के लिए पर्यावरण से पृथक किया गया है।[13]
माइक्रोबियल कंसोर्टिया प्राप्त करने के लिए दो दृष्टिकोण मौजूद हैं जिनमें या तो (i) कई अलग-अलग उपभेदों को जोड़कर एक सिंथेटिक असेंबली शामिल है,[14] या (ii) पर्यावरणीय नमूनों से जटिल माइक्रोबियल समुदायों की प्राप्ति।[15] बाद के लिए, वांछित माइक्रोबियल कंसोर्टिया प्राप्त करने के लिए अक्सर संवर्धन प्रक्रिया का उपयोग किया जाता है।[16][17][18] उदाहरण के लिए, एक उच्च xylanase गतिविधि दिखाने वाला दीमक गट-व्युत्पन्न कंसोर्टियम कच्चे गेहूं के भूसे पर एकमात्र कार्बन स्रोत के रूप में समृद्ध था, जो एनारोबिक स्थितियों के तहत लिग्नोसेल्यूलोज को कार्बोक्सिलेट्स में बदलने में सक्षम था।[19] पर्यावरणीय नमूनों से काम करते समय संवर्धन चरणों के उपयोग के बावजूद अपेक्षाकृत उच्च विविधता स्तर अभी भी देखे जाते हैं,[18]संभावित रूप से पर्यावरणीय माइक्रोबियल समुदायों में देखे गए उच्च कार्यात्मक अतिरेक के कारण, उनकी कार्यात्मक स्थिरता की एक प्रमुख संपत्ति है।[20][21] यह आंतरिक विविधता व्यावहारिक अनुप्रयोग के लिए आगे बढ़ने के प्रयासों में एक बाधा के रूप में खड़ी हो सकती है (i) दक्षता के साथ संभावित नकारात्मक सहसंबंध[22] (ii) वास्तविक माइक्रोबियल चीटर जिनकी उपस्थिति का क्षरण पर कोई प्रभाव नहीं पड़ता है, (iii) ज्ञात या अज्ञात रोगजनकों की उपस्थिति से उत्पन्न सुरक्षा खतरे, और (iv) दुर्लभ टैक्सा द्वारा समर्थित होने पर ब्याज के गुणों को खोने का जोखिम।[23] कम जटिलता के साथ माइक्रोबियल कंसोर्टिया का उपयोग, लेकिन समान दक्षता, अधिक नियंत्रित और अनुकूलित औद्योगिक प्रक्रियाओं को जन्म दे सकती है।[24] इसलिए, पर्यावरणीय नमूनों से प्राप्त अनुकूलित माइक्रोबियल कंसोर्टिया की विविधता को कम करने के लिए विश्वसनीय रणनीतियां खोजना महत्वपूर्ण है। विभिन्न चयापचय कार्यात्मक समूहों के आधार पर lignocellulose क्षरण के लिए प्रभावी न्यूनतम माइक्रोबियल कंसोर्टिया के निर्माण के लिए एक रिडक्टिव-स्क्रीनिंग दृष्टिकोण लागू किया गया था।[24]इसके अतिरिक्त, बैक्टीरियल कंसोर्टिया प्राप्त करने के लिए कृत्रिम चयन दृष्टिकोण (कमजोर पड़ने, विषाक्तता और गर्मी) को भी नियोजित किया गया है।[25] उनमें से, समुद्री जल और रुमेन शराब से कार्यात्मक माइक्रोबियल कंसोर्टिया प्राप्त करने के लिए कमजोर पड़ने से विलुप्त होने ने पहले ही अपनी दक्षता साबित कर दी है।[26][27][28] तनुकरण-से-विलुप्त होने से परंपरागत अलगाव और असेंबली की तुलना में अधिक लाभ प्रदान करने की उम्मीद है क्योंकि यह (i) स्क्रीनिंग के लिए तैयार कई माइक्रोबियल संयोजन उत्पन्न करता है, (ii) प्रारंभिक माइक्रोबियल पूल से उपभेद शामिल हैं जो खेती/अलगाव के कारण खो सकते हैं पक्षपात, और (iii) यह सुनिश्चित करता है कि सभी रोगाणु भौतिक रूप से मौजूद हैं और अनायास बातचीत कर रहे हैं।[29][23]
उदाहरण
माइक्रोबियलाइट्स
माइक्रोबियलाइट्स लिथिफ़ाइड माइक्रोबियल मैट हैं जो बेंथिक मीठे पानी और समुद्री वातावरण में उगते हैं। माइक्रोबियलाइट्स जीवन के शुरुआती ज्ञात जीवाश्म प्रमाण हैं, जो 3.7 बिलियन वर्ष पुराने हैं।[citation needed] आज आधुनिक माइक्रोबियलाइट्स दुर्लभ हैं, और मुख्य रूप से स्यूडोमोनडोटा (पूर्व में प्रोटोबैक्टीरिया), साइनोबैक्टीरीया , सल्फेट-कम करने वाले बैक्टीरिया, डायटम और सूक्ष्म शैवाल द्वारा बनते हैं।[citation needed] ये सूक्ष्मजीव चिपकने वाले यौगिकों का उत्पादन करते हैं जो सीमेंटेशन (भूविज्ञान) रेत और खनिज माइक्रोबियल मैट बनाने के लिए अन्य चट्टानी सामग्रियों में शामिल होते हैं। मैट परत से परत बनाते हैं, समय के साथ धीरे-धीरे बढ़ते हैं।[citation needed]
राइजोस्फीयर
फ़ाइल: राइजोस्फीयर माइक्रोबियल कंसोर्टिया.वेबपी|थंब|अपराइट=2|राइट|
हालांकि विभिन्न अध्ययनों से पता चला है कि एकल सूक्ष्मजीव पौधों पर लाभकारी प्रभाव डाल सकते हैं, यह तेजी से स्पष्ट है कि जब एक माइक्रोबियल संघ - दो या दो से अधिक परस्पर क्रिया करने वाले सूक्ष्मजीव - शामिल होते हैं, तो योगात्मक या सहक्रियात्मक परिणाम की उम्मीद की जा सकती है। यह आंशिक रूप से इस तथ्य के कारण होता है कि कई प्रजातियां एक पारिस्थितिकी तंत्र में कई प्रकार के कार्य कर सकती हैं जैसे कि पौधे की जड़ rhizosphere। पौधों की वृद्धि उत्तेजना के लाभकारी तंत्र में पोषक तत्वों की उपलब्धता, फाइटोहोर्मोन मॉड्यूलेशन, जैव नियंत्रण , बायोटिक घटक और अजैविक घटक तनाव सहनशीलता शामिल हैं) राइजोस्फीयर के भीतर विभिन्न माइक्रोबियल खिलाड़ियों द्वारा लगाए गए हैं, जैसे पौधे-विकास को बढ़ावा देने वाले बैक्टीरिया (पीजीपीबी) और कवक जैसे ट्राइकोडर्मा और माइकोराइजा।[30] दाईं ओर का आरेख दिखाता है कि राइजोस्फीयर सूक्ष्मजीव जैसे पौधे-विकास को बढ़ावा देने वाले बैक्टीरिया (पीजीपीबी), अरबस्कुलर माइकोरिज़ल कवक (एएमएफ), और जीनस ट्राइकोडर्मा एसपीपी से कवक। पौधों के साथ लाभकारी संपर्क स्थापित कर सकते हैं, पौधों की वृद्धि और विकास को बढ़ावा दे सकते हैं, रोगजनकों के खिलाफ पौधों की रक्षा प्रणाली को बढ़ा सकते हैं, पोषक तत्वों को बढ़ावा दे सकते हैं और विभिन्न पर्यावरणीय तनावों के प्रति सहनशीलता बढ़ा सकते हैं। राइजोस्फीयर सूक्ष्मजीव एक दूसरे को प्रभावित कर सकते हैं, और पीजीपीबी + पीजीपीबी (उदाहरण के लिए, राइजोबियम एसपीपी और स्यूडोमोनास फ्लोरेसेंस जैसे नाइट्रोजन-फिक्सिंग जीवाणु), एएमएफ + पीजीपीबी, और ट्राइकोडर्मा + पीजीपीबी के परिणामी कंसोर्टिया का पौधों की वृद्धि और फिटनेस पर सहक्रियात्मक प्रभाव हो सकता है। , जैविक और अजैविक तनाव को दूर करने के लिए पौधे को बेहतर लाभ प्रदान करना। धराशायी तीर एएमएफ और ट्राइकोडर्मा के बीच लाभकारी बातचीत का संकेत देते हैं।[30]
केरातिन क्षरण
पर्यावरणीय उपचार और औद्योगिक उत्पादन के लिए पुनर्गणना सामग्री को नीचा दिखाने के लिए रोगाणुओं की क्षमता का बड़े पैमाने पर पता लगाया गया है। एकल उपभेदों के साथ महत्वपूर्ण उपलब्धियां हासिल की गई हैं, लेकिन अब उनकी कार्यात्मक स्थिरता और दक्षता के कारण माइक्रोबियल कंसोर्टिया के उपयोग पर ध्यान केंद्रित किया जा रहा है। हालाँकि, जटिल पर्यावरणीय समुदायों से सरलीकृत माइक्रोबियल कंसोर्टिया (SMC) की असेंबली बड़ी विविधता और जैविक बातचीत के प्रभाव के कारण अभी भी तुच्छ है।[23]
केरातिन क्रॉस से जुड़े घटकों के साथ पुनरावर्ती रेशेदार सामग्री हैं, जो उपकला कोशिकाओं में सबसे प्रचुर मात्रा में प्रोटीन का प्रतिनिधित्व करते हैं।[31] जैव अवक्रमण के बाद उनका काफी आर्थिक मूल्य होने का अनुमान है।[32] एक कुशल केराटिनोलिटिक माइक्रोबियल कंसोर्टियम (KMCG6) को पहले केरातिन माध्यम में खेती के माध्यम से एक पर्यावरणीय नमूने से समृद्ध किया गया था।[18]संवर्धन प्रक्रिया के दौरान माइक्रोबियल विविधता को कम करने के बावजूद, KMCG6 में अभी भी कई ऑपरेशनल टैक्सोनोमिक यूनिट शामिल हैं जो सात बैक्टीरियल जेनेरा के बीच बिखरी हुई हैं।[23]
2020 में कांग एट अल।, इस मूल कंसोर्टियम (KMCG6) से निकाले गए संवर्धन संस्कृति और कमजोर पड़ने वाली विलुप्त होने वाली संस्कृतियों पर आधारित रणनीति का उपयोग करते हुए, कम प्रजातियों के साथ एक सरलीकृत माइक्रोबियल कंसोर्टिया (SMC) लेकिन समान केराटिनोलिटिक गतिविधि।[23]मिट्टी के नमूने से पूर्व-समृद्ध केराटिनोलिटिक माइक्रोबियल कंसोर्टियम पर सीरियल कमजोर पड़ने का प्रदर्शन किया गया। एक उपयुक्त तनुकरण व्यवस्था (109) को समृद्ध माइक्रोबियल कंसोर्टियम से SMC लाइब्रेरी बनाने के लिए चुना गया था। इसके अलावा डीएनए अनुक्रमण और केराटिनोलिटिक गतिविधि परख ने प्रदर्शित किया कि प्राप्त एसएमसी ने विभिन्न टैक्सोनोमिक संरचना और बायोडिग्रेडेशन क्षमताओं के साथ वास्तविक कम माइक्रोबियल विविधता प्रदर्शित की। इससे भी महत्वपूर्ण बात यह है कि कई एसएमसी के पास प्रारंभिक कंसोर्टियम की तुलना में केराटिनोलिटिक दक्षता के समकक्ष स्तर थे, यह दर्शाता है कि कार्य और दक्षता के नुकसान के बिना सरलीकरण प्राप्त किया जा सकता है।[23]
जैसा कि दाईं ओर आरेख में दिखाया गया है, इस अध्ययन के लिए कार्यप्रवाह में चार चरण शामिल हैं: (1) वांछित लक्षणों के लिए संवर्धन जैसे, केराटिन माध्यम में चयन द्वारा केराटिनोलिटिक गतिविधि, जहां केराटिन एकमात्र कार्बन स्रोत है। इस प्रक्रिया का मूल्यांकन कार्यात्मक आकलन (कोशिका घनत्व, एंजाइम गतिविधि, और अवशिष्ट सब्सट्रेट का अनुपात) और संरचनागत विश्लेषण द्वारा किया गया था। (2) समृद्ध प्रभावी माइक्रोबियल कंसोर्टिया के लिए सीरियल dilutions आयोजित किए गए थे। 10 कमजोर पड़ने से छह कमजोरियां तैयार की गईं2 से 1010 24 प्रतिकृति के साथ। कार्यात्मक मूल्यांकन मानदंडों के आधार पर यूक्लिडियन दूरी गणना द्वारा कमजोर पड़ने के बीच असमानता का मूल्यांकन किया गया था। (3) पुस्तकालय निर्माण प्रतिकृति के बीच इष्टतम असमानता की पेशकश के कमजोर पड़ने से किया गया था। कमजोर पड़ने 109 को इस मामले में SMC लाइब्रेरी बनाने के लिए चुना गया था। (4) सबसे होनहार एसएमसी का चयन कार्यात्मक और संरचनागत लक्षण वर्णन पर आधारित है।[23]
मानव स्वास्थ्य
कंसोर्टिया आमतौर पर मनुष्यों में पाए जाते हैं, जिनमें प्रमुख उदाहरण त्वचा वनस्पति और अच्छा वनस्पति हैं जो मानव पोषण में सुरक्षा और सहायता प्रदान करते हैं। इसके अतिरिक्त, जीवाणुओं की पहचान मस्तिष्क के भीतर मौजूद (पहले बाँझ मानी जाती थी) के रूप में की गई है, मेटागेनोम साक्ष्य के साथ पाया गया है कि प्रजातियाँ मूल रूप से एंटेरिक हो सकती हैं।[33][34] जैसा कि पाई जाने वाली प्रजातियाँ अच्छी तरह से स्थापित प्रतीत होती हैं, मानव स्वास्थ्य पर कोई प्रभाव नहीं पड़ता है, और ऐसी प्रजातियाँ हैं जिन्हें आंत में पाए जाने पर कंसोर्टिया बनाने के लिए जाना जाता है, यह अत्यधिक संभावना है कि उन्होंने मस्तिष्क के भीतर एक सहजीवी संघ भी बनाया है।[35]
सिंथेटिक माइक्रोबियल कंसोर्टिया
फ़ाइल: Escherichia-coli-bacterium(1).tif|thumb|upright=1| Escherichia coli जीवाणु के माध्यम से एक क्रॉस-सेक्शन की पेंटिंग, एक chemoheterotrophic जीवाणु अक्सर सिंथेटिक माइक्रोबियल कंसोर्टिया में उपयोग किया जाता है।
सिंथेटिक माइक्रोबियल कंसोर्टिया (आमतौर पर सह-संस्कृति कहा जाता है) बहु-जनसंख्या प्रणालियां हैं जिनमें माइक्रोबियल प्रजातियों की एक विविध श्रेणी हो सकती है, और विभिन्न प्रकार के औद्योगिक और पारिस्थितिक हितों की पूर्ति के लिए समायोज्य हैं। संश्लेषित जीव विज्ञान विज्ञान के लिए, कंसोर्टिया उपन्यास सेल व्यवहारों को जनसंख्या स्तर पर इंजीनियर करने की क्षमता लेता है। कंसोर्टिया प्रकृति में नहीं होने की तुलना में अधिक सामान्य हैं, और आम तौर पर मोनोकल्चर की तुलना में अधिक मजबूत साबित होते हैं।[36] अभी तक जीवाणुओं की 7,000 से अधिक प्रजातियों की खेती की गई है और उनकी पहचान की गई है। अनुमानित 1.2 मिलियन बैक्टीरिया प्रजातियों में से कई अभी तक सुसंस्कृत और पहचानी जानी बाकी हैं, आंशिक रूप से अक्षीय रूप से सुसंस्कृत होने में असमर्थता के कारण।[37] सिंथेटिक कंसोर्टिया डिजाइन करते समय, या स्वाभाविक रूप से होने वाले कंसोर्टिया का संपादन करते समय, सिंथेटिक जीवविज्ञानी पीएच, तापमान, प्रारंभिक चयापचय प्रोफाइल, ऊष्मायन समय, विकास दर और अन्य प्रासंगिक चर का ट्रैक रखते हैं।[36]
यह भी देखें
- बायोफिल्म
- माइक्रोबियल इंटेलिजेंस
- माइक्रोबियल लूप
- माइक्रोबियल मैट
- माइक्रोबियल जनसंख्या जीव विज्ञान
- सिंथेटिक माइक्रोबियल कंसोर्टिया
- माइक्रोबियल सहयोग
टिप्पणियाँ
- ↑ Madigan, M; Bender, K; Buckley, D; Sattley, W; Stahl, D (2019). सूक्ष्मजीवों की ब्रॉक बायोलॉजी (Fifteenth, Global ed.). New York, NY: Pearson. p. 173. ISBN 9781292235103.
- ↑ Mark, Martin (2009-04-27). "Happy Together… Life of the Bacterial Consortium Chlorochromatium aggregatum". Small Things Considered - The Microbe Blog. American Society for Microbiology. Archived from the original on 2009-05-01. Retrieved 2012-01-11.
Consortia are assemblages of different species of microbes in physical (and sometimes intricate biochemical) contact with one another, and are implicated in biological processes ranging from sewage treatment to marine nitrogen cycling to metabolic processes within the rumen.
- ↑ Thompson, William Irwin (1991). Gaia 2 : emergence : the new science of becoming. Hudson, NY: Lindisfarne Press. pp. 51–58. ISBN 9780940262409.
- ↑ Reinke, Johannes 1872. Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 9: 100–108.
- ↑ Kull, Kalevi 2010. Ecosystems are made of semiosic bonds: Consortia, umwelten, biophony and ecological codes. Biosemiotics 3(3): 347–357.
- ↑ Delaux, Pierre-Marc; Radhakrishnan, Guru V.; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D.; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael (2015-10-27). "सहजीवन के लिए स्थलीय पादपों के शैवाल पूर्वज को पूर्व-अनुकूलित किया गया". Proceedings of the National Academy of Sciences of the United States of America. 112 (43): 13390–13395. Bibcode:2015PNAS..11213390D. doi:10.1073/pnas.1515426112. PMC 4629359. PMID 26438870.
- ↑ Hassani, M.A., Durán, P. and Hacquard, S. (2018) "Microbial interactions within the plant holobiont". Microbiome, 6(1): 58. doi:10.1186/s40168-018-0445-0. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- ↑ Subashchandrabose, Suresh R.; Ramakrishnan, Balasubramanian; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi (2011). "Consortia of cyanobacteria/Microalgae and bacteria: Biotechnological potential". Biotechnology Advances. 29 (6): 896–907. doi:10.1016/j.biotechadv.2011.07.009. PMID 21801829.
- ↑ Shong, Jasmine; Jimenez Diaz, Manuel Rafael; Collins, Cynthia H. (2012). "बायोप्रोसेसिंग के लिए सिंथेटिक माइक्रोबियल कंसोर्टिया की ओर". Current Opinion in Biotechnology. 23 (5): 798–802. doi:10.1016/j.copbio.2012.02.001. PMID 22387100.
- ↑ Brown, Margaret E.; Chang, Michelle CY (2014). "बैक्टीरियल लिग्निन क्षरण की खोज". Current Opinion in Chemical Biology. 19: 1–7. doi:10.1016/j.cbpa.2013.11.015. PMID 24780273.
- ↑ Cregut, Mickael; Bedas, M.; Durand, M.-J.; Thouand, G. (2013). "पॉलीयूरेथेन बायोडिग्रेडेशन में नई अंतर्दृष्टि और टिकाऊ अपशिष्ट रीसाइक्लिंग प्रक्रिया के विकास के लिए यथार्थवादी संभावनाएं". Biotechnology Advances. 31 (8): 1634–1647. doi:10.1016/j.biotechadv.2013.08.011. PMID 23978675.
- ↑ Mikesková, H.; Novotný, Č.; Svobodová, K. (2012). "बायोडिग्रेडेशन परिप्रेक्ष्य में मिश्रित माइक्रोबियल संस्कृतियों में अंतःक्रियात्मक बातचीत". Applied Microbiology and Biotechnology. 95 (4): 861–870. doi:10.1007/s00253-012-4234-6. PMID 22733114. S2CID 7420481.
- ↑ Skariyachan, Sinosh; Patil, Amulya A.; Shankar, Apoorva; Manjunath, Meghna; Bachappanavar, Nikhil; Kiran, S. (2018). "ब्रेविबैसिलस एसपीएस के उपन्यास थर्मोफिलिक कंसोर्टिया द्वारा पॉलीइथाइलीन और पॉलीप्रोपाइलीन के संवर्धित बहुलक क्षरण। और एन्यूरिनिबैसिलस सपा। अपशिष्ट प्रबंधन लैंडफिल और सीवेज उपचार संयंत्रों से जांच की गई". Polymer Degradation and Stability. 149: 52–68. doi:10.1016/j.polymdegradstab.2018.01.018.
- ↑ Skariyachan, Sinosh; Patil, Amulya A.; Shankar, Apoorva; Manjunath, Meghna; Bachappanavar, Nikhil; Kiran, S. (2018). "ब्रेविबैसिलस एसपीएस के उपन्यास थर्मोफिलिक कंसोर्टिया द्वारा पॉलीइथाइलीन और पॉलीप्रोपाइलीन के संवर्धित बहुलक क्षरण। और एन्यूरिनिबैसिलस सपा। अपशिष्ट प्रबंधन लैंडफिल और सीवेज उपचार संयंत्रों से जांच की गई". Polymer Degradation and Stability. 149: 52–68. doi:10.1016/j.polymdegradstab.2018.01.018.
- ↑ Skariyachan, Sinosh; Setlur, Anagha Shamsundar; Naik, Sujay Yashwant; Naik, Ashwini Amaresh; Usharani, Makam; Vasist, Kiran S. (2017). "थर्मोफिलिक स्थितियों के तहत प्लास्टिक-दूषित गाय के गोबर से तैयार उपन्यास बैक्टीरियल कंसोर्टिया द्वारा कम और उच्च घनत्व वाली पॉलीथीन का संवर्धित बायोडिग्रेडेशन". Environmental Science and Pollution Research. 24 (9): 8443–8457. doi:10.1007/s11356-017-8537-0. PMID 28188552. S2CID 9776975.
- ↑ Luo, Fei; Devine, Cheryl E.; Edwards, Elizabeth A. (2016). "बेंजीन-डिग्रेडिंग मेथनोजेनिक कंसोर्टिया में माइक्रोबियल डार्क मैटर की खेती". Environmental Microbiology. 18 (9): 2923–2936. doi:10.1111/1462-2920.13121. PMID 26549712.
- ↑ Burniol-Figols, Anna; Varrone, Cristiano; Le, Simone Balzer; Daugaard, Anders Egede; Skiadas, Ioannis V.; Gavala, Hariklia N. (2018). "Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia". Water Research. 136: 180–191. doi:10.1016/j.watres.2018.02.029. PMID 29505919.
- ↑ 18.0 18.1 18.2 Kang, Dingrong; Herschend, Jakob; Al-Soud, Waleed Abu; Mortensen, Martin Steen; Gonzalo, Milena; Jacquiod, Samuel; Sørensen, Søren J. (2018). "कुशल केराटिनोलिटिक गतिविधि प्रदर्शित करने वाले एक पर्यावरण माइक्रोबियल संघ का संवर्धन और लक्षण वर्णन". Bioresource Technology. 270: 303–310. doi:10.1016/j.biortech.2018.09.006. PMID 30236907.
- ↑ Lazuka, Adèle; Auer, Lucas; o'Donohue, Michael; Hernandez-Raquet, Guillermina (2018). "Anaerobic lignocellulolytic microbial consortium derived from termite gut: Enrichment, lignocellulose degradation and community dynamics". Biotechnology for Biofuels. 11: 284. doi:10.1186/s13068-018-1282-x. PMC 6191919. PMID 30356893.
- ↑ Shade, Ashley; Peter, Hannes; Allison, Steven D.; Baho, Didier L.; Berga, Mercè; Bürgmann, Helmut; Huber, David H.; Langenheder, Silke; Lennon, Jay T.; Martiny, Jennifer B. H.; Matulich, Kristin L.; Schmidt, Thomas M.; Handelsman, Jo (2012). "माइक्रोबियल समुदाय प्रतिरोध और लचीलापन की बुनियादी बातों". Frontiers in Microbiology. 3: 417. doi:10.3389/fmicb.2012.00417. PMC 3525951. PMID 23267351.
- ↑ Awasthi, Ashutosh; Singh, Mangal; Soni, Sumit K.; Singh, Rakshapal; Kalra, Alok (2014). "जैव विविधता अजैविक गड़बड़ी के तहत जीवाणु समुदायों की उत्पादकता के बीमा के रूप में कार्य करती है". The ISME Journal. 8 (12): 2445–2452. doi:10.1038/ismej.2014.91. PMC 4260711. PMID 24926862.
- ↑ Banerjee, Samiran; Kirkby, Clive A.; Schmutter, Dione; Bissett, Andrew; Kirkegaard, John A.; Richardson, Alan E. (2016). "नेटवर्क विश्लेषण एक कृषि योग्य मिट्टी में कार्बनिक पदार्थों के अपघटन के दौरान बैक्टीरिया और कवक समुदायों के बीच कार्यात्मक अतिरेक और कीस्टोन कर का खुलासा करता है". Soil Biology and Biochemistry. 97: 188–198. doi:10.1016/j.soilbio.2016.03.017.
- ↑ 23.0 23.1 23.2 23.3 23.4 23.5 23.6 23.7 Kang, Dingrong; Jacquiod, Samuel; Herschend, Jakob; Wei, Shaodong; Nesme, Joseph; Sørensen, Søren J. (2020). "संवर्धन और कमजोर-से-विलुप्त होने वाली संस्कृतियों के आधार पर अड़ियल सामग्री को कम करने के लिए सरलीकृत माइक्रोबियल कंसोर्टिया का निर्माण". Frontiers in Microbiology. 10: 3010. doi:10.3389/fmicb.2019.03010. PMC 6968696. PMID 31998278. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- ↑ 24.0 24.1 {{cite journal |doi = 10.1007/s00248-017-1141-5|title = Lignocellulose गिरावट के लिए प्रभावी न्यूनतम सक्रिय माइक्रोबियल कंसोर्टिया का निर्माण|year = 2018|last1 = Puentes-Téllez|first1 = Pilar Eliana|last2 = Falcao Salles|first2 = Joana|journal = Microbial Ecology|volume = 76|issue = 2|pages = 419–429|pmid = 29392382|pmc = 6061470}</रेफ> उदाहरण के लिए, कार्यात्मक जीनों का एक बड़ा हिस्सा उल्लेखनीय रूप से बदल दिया गया था और डीजल-दूषित मिट्टी से माइक्रोबियल समुदाय की जैव विविधता को कम करके डीजल बायोडिग्रेडेशन की दक्षता में वृद्धि हुई थी। रेफरी>{{cite journal |doi = 10.1038/srep23012|title = मिट्टी के कार्यों पर बैक्टीरिया की विविधता में कमी और डीजल-दूषित सूक्ष्म जगत में बायोरेमेडिएशन के परिणामों का मेटागेनोमिक और कार्यात्मक विश्लेषण|year = 2016|last1 = Jung|first1 = Jaejoon|last2 = Philippot|first2 = Laurent|last3 = Park|first3 = Woojun|journal = Scientific Reports|volume = 6|page = 23012|pmid = 26972977|pmc = 4789748|bibcode = 2016NatSR...623012J}
- ↑ Lee, Duu-Jong; Show, Kuan-Yeow; Wang, Aijie (2013). "Unconventional approaches to isolation and enrichment of functional microbial consortium – A review". Bioresource Technology. 136: 697–706. doi:10.1016/j.biortech.2013.02.075. PMID 23566469.
- ↑ Ho, Kuo-Ling; Lee, Duu-Jong; Su, Ay; Chang, Jo-Shu (2012). "लिग्नोसेल्यूलोसिक फीडस्टॉक से बायोहाइड्रोजेन वन-स्टेप प्रक्रिया के माध्यम से". International Journal of Hydrogen Energy. 37 (20): 15569–15574. doi:10.1016/j.ijhydene.2012.01.137.
- ↑ Hoefman, Sven; Van Der Ha, David; De Vos, Paul; Boon, Nico; Heylen, Kim (2012). "तेजी से बढ़ने वाले मीथेन-ऑक्सीडाइजिंग बैक्टीरिया के तेजी से अलगाव के लिए लघुकृत विलुप्त होने की खेती पसंदीदा रणनीति है". Microbial Biotechnology. 5 (3): 368–378. doi:10.1111/j.1751-7915.2011.00314.x. PMC 3821679. PMID 22070783.
- ↑ Sosa, Oscar A.; Gifford, Scott M.; Repeta, Daniel J.; Delong, Edward F. (2015). "उच्च आणविक भार भंग कार्बनिक पदार्थ संवर्धन विलुप्त होने वाली संस्कृतियों के कमजोर पड़ने में मेथिलोट्रोफ्स के लिए चयन करता है". The ISME Journal. 9 (12): 2725–2739. doi:10.1038/ismej.2015.68. PMC 4817625. PMID 25978545.
- ↑ Roger, Fabian; Bertilsson, Stefan; Langenheder, Silke; Osman, Omneya Ahmed; Gamfeldt, Lars (2016). "कामकाज, स्थिरता और बहुक्रियाशीलता पर जीवाणु विविधता के कई आयामों का प्रभाव". Ecology. 97 (10): 2716–2728. doi:10.1002/ecy.1518. PMID 27859115.
- ↑ 30.0 30.1 30.2 Santoyo, Gustavo; Guzmán-Guzmán, Paulina; Parra-Cota, Fannie Isela; Santos-Villalobos, Sergio de los; Orozco-Mosqueda, Ma. del Carmen; Glick, Bernard R. (2021). "माइक्रोबियल कंसोर्टिया द्वारा प्लांट ग्रोथ स्टिमुलेशन". Agronomy. 11 (2): 219. doi:10.3390/agronomy11020219. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- ↑ Coulombe, Pierre A.; Omary, M.Bishr (2002). "केराटिन इंटरमीडिएट फिलामेंट्स की संरचना, कार्य और विनियमन को परिभाषित करने वाले 'हार्ड' और 'सॉफ्ट' सिद्धांत". Current Opinion in Cell Biology. 14 (1): 110–122. doi:10.1016/s0955-0674(01)00301-5. PMID 11792552.
- ↑ Korniłłowicz-Kowalska, Teresa; Bohacz, Justyna (2011). "Biodegradation of keratin waste: Theory and practical aspects". Waste Management. 31 (8): 1689–1701. doi:10.1016/j.wasman.2011.03.024. PMID 21550224.
- ↑ Pennisi, Elizabeth (7 May 2020). "Meet the 'psychobiome': the gut bacteria that may alter how you think, feel, and act". Science Magazine. Retrieved 12 December 2020.
- ↑ Rettner, Rachel (15 November 2018). "बैक्टीरिया आपके मस्तिष्क में रह सकते हैं (हानिरहित)।". livescience.com (in English). Live Science. Retrieved 12 December 2020.
- ↑ Roberts, R. C.; Farmer, C. B.; Walker, C. K. (6 November 2018). "The human brain microbiome; there are bacteria in our brains!". Psychiatry and Behavioral Neurobio., Univ. Of Alabama, Birmingham, Birmingham, AL. 2018 Neuroscience Meeting Planner. (Program No. 594.08). Retrieved 12 December 2020.
- ↑ 36.0 36.1 Hays, Stephanie G.; Ducat, Daniel C. (14 February 2014). "इंजीनियरिंग सायनोबैक्टीरिया प्रकाश संश्लेषक फीडस्टॉक कारखानों के रूप में". Photosynthesis Research. 123 (3): 285–295. doi:10.1007/s11120-014-9980-0. PMC 5851442. PMID 24526260.
- ↑ Stewart, Eric J. (2012-08-15). "बढ़ते असंस्कृत बैक्टीरिया". Journal of Bacteriology (in English). 194 (16): 4151–4160. doi:10.1128/JB.00345-12. PMC 3416243. PMID 22661685.
[Category:Microorganis