अनुपातहीनता

From Vigyanwiki
Revision as of 16:46, 22 March 2023 by alpha>Indicwiki (Created page with "{{short description|Redox reaction whose products have higher and lower oxidation states than the reactant}} {{More citations needed|date=June 2022}} {{Other uses|Proportional...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

रसायन विज्ञान में, असमानता, जिसे कभी-कभी विघटन कहा जाता है, एक रेडॉक्स प्रतिक्रिया होती है जिसमें मध्यवर्ती ऑक्सीकरण राज्य का एक यौगिक दो यौगिकों में परिवर्तित होता है, एक उच्च और निम्न ऑक्सीकरण राज्यों में से एक।[1][2] अधिक आम तौर पर, इस शब्द को निम्न प्रकार की किसी भी असममित प्रतिक्रिया पर लागू किया जा सकता है, भले ही यह एक रेडॉक्स या किसी अन्य प्रकार की प्रक्रिया हो:[3]


उदाहरण

  • पारा (I) क्लोराइड यूवी-विकिरण पर अनुपातहीन हो जाता है:[clarification needed]
एचजी2क्लोरीन2 → एचजी + एचजीसीएल2
4 H
3
PO
3
→ 3 एच3बाद4 + पीएच3
  • डीसिमेट्रिजिंग प्रतिक्रियाओं को कभी-कभी अनुपातहीनता के रूप में संदर्भित किया जाता है, जैसा कि बाइकार्बोनेट के थर्मल क्षरण द्वारा दिखाया गया है:
2 HCO
3
CO2−
3
+ एच2सीओ3
इस एसिड-बेस प्रतिक्रिया में ऑक्सीकरण संख्या स्थिर रहती है। इस प्रक्रिया को स्वआयनीकरण भी कहा जाता है।


विपरीत प्रतिक्रिया

अनुपातहीनता का उल्टा, जैसे कि जब एक मध्यवर्ती ऑक्सीकरण अवस्था में एक यौगिक निम्न और उच्च ऑक्सीकरण राज्यों के अग्रदूतों से बनता है, तो इसे समनुपात कहा जाता है, जिसे सिनप्रोपोर्टेशन भी कहा जाता है।

इतिहास

विस्तार से अध्ययन की जाने वाली पहली अनुपातहीनता प्रतिक्रिया थी:

2 सं2+ → सं4+ + एस.एन

1788 में जोहान गैडोलिन द्वारा टारट्रेट का उपयोग करके इसकी जांच की गई थी। अपने पेपर के स्वीडिश संस्करण में उन्होंने इसे 'सॉन्डिंग' कहा था।[4][5]


अन्य उदाहरण


पॉलिमर रसायन

फ्री-रेडिकल श्रृंखला-विकास पोलीमराइज़ेशन में, श्रृंखला समाप्ति एक अनुपातहीन कदम से हो सकता है जिसमें एक हाइड्रोजन परमाणु को एक बढ़ती श्रृंखला अणु से दूसरे में स्थानांतरित किया जाता है जो दो मृत (गैर-बढ़ती) श्रृंखलाओं का उत्पादन करता है।[10]

-------च2–C°HX + -------CH2–C°HX → -------CH=CHX + -------CH2-ch2एक्स

जैव रसायन

1937 में, हंस एडॉल्फ क्रेब्स, जिन्होंने अपने नाम वाले साइट्रिक एसिड चक्र की खोज की, ने पाइरुविक तेजाब के अवायवीय विघटन को दुग्धाम्ल , एसीटिक अम्ल और कार्बन डाइऑक्साइड में पुष्टि की।2कुछ जीवाणुओं द्वारा वैश्विक प्रतिक्रिया के अनुसार:[11]

2 पाइरुविक अम्ल + एच2हे → लैक्टिक एसिड + एसिटिक एसिड + सीओ2

अन्य छोटे कार्बनिक अणुओं में पाइरुविक अम्ल का विघटन (इथेनॉल + CO2, या लैक्टेट और एसीटेट, पर्यावरण की स्थिति पर निर्भर करता है) भी किण्वन (जैव रसायन) प्रतिक्रियाओं में एक महत्वपूर्ण कदम है। किण्वन प्रतिक्रियाओं को अनुपातहीनता या विघटन जैव रासायनिक प्रतिक्रियाओं के रूप में भी माना जा सकता है। दरअसल, इन जटिल जैव रासायनिक प्रणालियों में रासायनिक ऊर्जा की आपूर्ति करने वाली रेडॉक्स प्रतिक्रियाओं में इलेक्ट्रॉनों के इलेक्ट्रॉन दाता और इलेक्ट्रॉन स्वीकर्ता एक ही कार्बनिक अणु हैं जो एक साथ कम करना या ऑक्सीडेंट के रूप में कार्य करते हैं।

बायोकेमिकल डिसम्यूटेशन रिएक्शन का एक और उदाहरण एसीटैल्डिहाइड का इथेनॉल और एसिटिक एसिड में असमानुपातन है।[12] जबकि कोशिकीय श्वसन में इलेक्ट्रॉनों को सब्सट्रेट (जैव रसायन) (इलेक्ट्रॉन दाता) से एक इलेक्ट्रॉन स्वीकर्ता में स्थानांतरित किया जाता है, सब्सट्रेट अणु के किण्वन भाग में स्वयं इलेक्ट्रॉनों को स्वीकार करता है। किण्वन इसलिए एक प्रकार का अनुपातहीनता है, और इसमें सब्सट्रेट के ऑक्सीकरण अवस्था में समग्र परिवर्तन शामिल नहीं है। अधिकांश किण्वक सबस्ट्रेट्स कार्बनिक अणु होते हैं। हालांकि, एक दुर्लभ प्रकार के किण्वन में कुछ सल्फेट-कम करने वाले जीवाणुओं में अकार्बनिक गंधक यौगिकों का अनुपात भी शामिल हो सकता है।[13]


यह भी देखें

संदर्भ

  1. Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. “Inorganic Chemistry” W. H. Freeman, New York, 2006. ISBN 0-7167-4878-9.
  2. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  3. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "disproportionation". doi:10.1351/goldbook.D01799
  4. Gadolin Johan (1788) K. Sv. Vet. Acad. Handl. 1788, 186-197.
  5. Gadolin Johan (1790) Crells Chem. Annalen 1790, I, 260-273.
  6. Charlie Harding, David Arthur Johnson, Rob Janes, (2002), Elements of the P Block, Published by Royal Society of Chemistry, ISBN 0-85404-690-9
  7. Non Aqueous Media.
  8. 8.0 8.1 José Jiménez Barberá; Adolf Metzger; Manfred Wolf (2000). "Sulfites, Thiosulfates, and Dithionites". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_477.
  9. J. Meyer and W. Schramm, Z. Anorg. Chem., 132 (1923) 226. Cited in: A Comprehensive Treatise on Theoretical and Inorganic Chemistry, by J.W. Meller, John Wiley and Sons, New York, Vol. XII, p. 225.
  10. Cowie, J. M. G. (1991). Polymers: Chemistry & Physics of Modern Materials (2nd ed.). Blackie. p. 58. ISBN 0-216-92980-6.
  11. Krebs, H.A. (1937). "LXXXVIII - गोनोकस और स्टेफिलोकोकस में पाइरुविक एसिड का विघटन". Biochem. J. 31 (4): 661–671. doi:10.1042/bj0310661. PMC 1266985. PMID 16746383.
  12. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae
  13. Bak, Friedhelm; Cypionka, Heribert (1987). "अकार्बनिक सल्फर यौगिकों के किण्वन से जुड़े एक नए प्रकार का ऊर्जा चयापचय". Nature. 326 (6116): 891–892. Bibcode:1987Natur.326..891B. doi:10.1038/326891a0. PMID 22468292. S2CID 27142031.