प्रतिरक्षा इलेक्ट्रॉन माइक्रोस्कोपी

From Vigyanwiki
Revision as of 08:30, 13 April 2023 by alpha>Jyotimehta (text)
कई रोटावायरस कणों का एक इलेक्ट्रॉन माइक्रोग्राफ, जिनमें से दो में कई छोटे, काले रंग के गोले हैं, जो उनसे जुड़े हुए प्रतीत होते हैं, छोटे काले गोलाकार ऑब्जेक्ट सोने के नैनोकण हैं, जिन पर मोनोक्लोनल ऐंटीबॉडी की परत चढ़ी हुई है।
रोटावायरस से जुड़े सोने के नैनोकणों का इलेक्ट्रॉन माइक्रोग्राफ। रोटावायरस प्रोटीन VP6.

प्रतिरक्षा इलेक्ट्रॉन (अतिसूक्ष्म परमाणु) सूक्ष्मदर्शिकी (जिसे प्रायः इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी कहा जाता है) प्रतिरक्षाप्रतिदीप्ती के बराबर है, लेकिन यह हल्की सूक्ष्मदर्शिकी के स्थान पर इलेक्ट्रॉन सूक्ष्मदर्शिकी का उपयोग करता है।[1] इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी अभिरूचि के एक अणु की पहचान और विशेष रूप से अभिरूचि का प्रोटीन स्थानीयकरण इसे एक विशेष रोगप्रतिकारक से जोड़कर करता है। यह बंधन कोशिका को पट्टिका में अंत: स्थापन करने से पहले या बाद में बन सकता है। प्रतिजन और रोगप्रतिकारक के बीच एक प्रतिक्रिया होती है, जिससे यह सूचक सूक्ष्मदर्शी के नीचे दिखाई देता है। यदि प्रतिजन कोशिका की सतह पर है तो इलेक्ट्रॉन सूक्ष्मदर्शिकी रेखाचित्रण एक व्यवहार्य विकल्प है, लेकिन यदि प्रतिजन कोशिका के भीतर है तो सूचक को देखने के लिए पारेषण इलेक्ट्रॉन सूक्ष्मदर्शिकी की आवश्यकता हो सकती है।[2]


प्रक्रिया

प्रतिजन और उनके संबंधित रोगप्रतिकारक (सामान्यतः दो) अनुभाग में परस्पर प्रभाव करते हैं।[1] प्रतिजन इलेक्ट्रॉन सूक्ष्मदर्शिकी तब रोगप्रतिकारक और प्रोटीन का पता लगाता है। दूसरा रोगप्रतिकारक सामान्यतः स्वर्ण के लिए बाध्य होता है क्योंकि स्वर्ण की परमाणु संख्या अधिक होती है, जिससे यह बहुत घना हो जाता है। कोलॉइडी स्वर्ण के कण उनके साथ जैव संयुग्मन द्वारा रोगप्रतिकारक को दृश्यमान बनाते हैं, क्योंकि उनका सटीक व्यास ज्ञात होता है।[3] इलेक्ट्रॉन जब सूक्ष्मदर्शी से पारित होते हैं तो स्वर्ण के इस कण से टकराते हैं। घने स्वर्ण का परमाणु इलेक्ट्रॉन सूक्ष्मदर्शी से उत्सर्जित होने वाले इलेक्ट्रॉनों को दर्शाता है और प्रतिरूप के भीतर लक्ष्य कण की उपस्थिति का कारण बनता है।[1]

एक अन्य संभावित प्रक्रिया में प्रोटीन ए सम्मिलित होता है, जो एक जीवाणु से प्राप्त होता है। यह स्वर्ण के परमाणु को स्थायी रूप से विलेप करता है और रोगप्रतिकारक के निरंतर क्षेत्र से जुड़ा रहता है। यह प्रक्रिया प्रोटीन ए को माध्यमिक के प्रतिस्थापन के रूप में उपयोग करती है और इसके परिणामस्वरूप, केवल एक रोगप्रतिकारक की आवश्यकता होती है। प्रोटीन ए लक्ष्य प्रोटीन को दृश्यमान बनाता है। इस प्रकार, पूरी प्रक्रिया का परिणाम लक्ष्य प्रोटीन के स्थानीयकरण और दृश्यता में होता है।[1]

प्रतिरक्षा इलेक्ट्रॉन सूक्ष्मदर्शिकी का उपयोग करते समय, प्रतिरूप या तो पतले वर्गों में हो सकता है ताकि इलेक्ट्रॉन उसमें प्रवेश कर सकें या नकारात्मक रूप से दागदार हो सके। नकारात्मक अभिरंजन होने का उच्च विश्लेषण होता है लेकिन केवल उन अणुओं की पहचान कर सकता है जो अकेले खड़े होने पर पहचानने योग्य होंगे। जब प्रतिरक्षा इलेक्ट्रॉन सूक्ष्मदर्शिकी में उपयोग किया जाता है, तो नकारात्मक धुंधला प्रतिरूप में एक छोटे कण को ​​​​प्रत्यारोपित करता है, इसके भीतर बेहतर समाधान संरचनाएं होती हैं। इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी का लाभ यह है कि यह कणों की पहचान के लिए अनुमति देता है, चाहे कोई भी संदर्भ हो।[4]


जटिलताओं और परिणाम

संभावित जटिलताएं

इलेक्ट्रॉनों को पारित करने की अनुमति देने के लिए सूक्ष्मदर्शी के नीचे के खंड बहुत पतले होने चाहिए। रासायनिक निर्धारण (हिस्टोलॉजी) और एम्बेडिंग (सामान्यतः प्लास्टिक में) सहित पतले वर्गों को बनाने के लिए आवश्यक कदमों की तैयारी के दौरान कुछ जटिलताएँ उत्पन्न हो सकती हैं। ये कठोर तैयारी प्रतिजन को निरूपित कर सकती हैं, रोगप्रतिकारक के साथ उनके आवश्यक बंधन को बाधित कर सकती हैं। शोधकर्ताओं ने इन मुद्दों को दरकिनार करने और प्रतिजन और रोगप्रतिकारक के बीच परस्पर प्रभाव को संरक्षित करने के लिए विशिष्ट प्रक्रियाओं का आविष्कार और उपयोग किया है। इन विधियों में रासायनिक निर्धारण के स्थान पर प्रकाश निर्धारण सम्मिलित है, प्रतिरूप को खंडित करने से पहले जमा देना, और इसे उच्च तापमान के स्थान पर कमरे के तापमान पर इनक्यूबेट करना।[1]

रोगप्रतिकारक और उनके संबंधित प्रतिजन के बीच या रोगप्रतिकारक और उनके स्वर्ण के सूचक के बीच बंधन केवल कम सांद्रता या बंधन पर स्टेरिक बाधा के प्रभाव के कारण आंशिक रूप से सुरक्षित हो सकते हैं। वायरस के बिना स्वाभाविक रूप से होने वाली लेबलिंग की मात्रा के लिए नियंत्रण समूह आवश्यक हैं।[5]


परिणाम

प्रतिरक्षा इलेक्ट्रॉन सूक्ष्मदर्शिकी के परिणाम आम तौर पर दृष्टिगत रूप से निर्धारित किए जाते हैं। मात्रात्मक अनुसंधान के प्रभावी होने के लिए प्रतिरूप में कुछ विशेषताएं होनी चाहिए, इसके उपयोग की आवृत्ति को सीमित करना। यह देखने जैसी स्थितियों में लागू होता है कि किसी विशेष रोगप्रतिकारक से कितने कोलॉइडी स्वर्ण के कण जुड़े हुए हैं।[5]सफल प्रयोगों के दौरान, प्रतिरक्षा इलेक्ट्रॉन सूक्ष्मदर्शिकी प्रोटीन का सटीक पता लगा सकती है और संरचना और कार्य के बीच संबंधों की समझ को मजबूत कर सकती है। लेबलिंग और स्थानीयकरण में ये प्रक्रियाएँ शोधकर्ताओं को विभिन्न सेलुलर मार्गों और प्रक्रियाओं को समझने में मदद करती हैं।[3]


इतिहास

1931 में, अर्नेस्ट रसा (1986 नोबेल पुरस्कार विजेता) और मैक्स नॉल ने पहला इलेक्ट्रॉन सूक्ष्मदर्शी बनाया। इस आविष्कार ने स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी और प्रतिजन इलेक्ट्रॉन सूक्ष्मदर्शी का नेतृत्व किया, जिसने बाद में इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी में योगदान दिया। पहले, प्रौद्योगिकी केवल द्वि-आयामी छवियों के लिए अनुमति देती थी, लेकिन अब आधुनिक तकनीक के साथ, त्रि-आयामी छवियां भी उपलब्ध हैं।[3]

इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी के बारे में तब आया जब 1940 के दशक में दो स्वतंत्र समूहों ने तम्बाकू मोज़ेक वायरस और इसके एंटीसेरम को मिलाया। फिर उन्होंने एक इलेक्ट्रॉन सूक्ष्मदर्शी के तहत इसकी जांच की। इस समय, दिन के अतिरिक्त कंट्रास्ट और खराब गुणवत्ता वाले सूक्ष्मदर्शी की कमी के कारण ऑप्टिकल संकल्प बहुत खराब था। प्रयोग में उपयोग किए गए कणों को रॉड के आकार के रूप में जाना जाता था, और शोधकर्ताओं के दोनों समूहों ने इन छड़ों को अपने मूल आकार से लगभग दोगुने समूह में एक साथ टकराते हुए पाया। डेढ़ दशक से भी अधिक समय के बाद, शोधकर्ताओं ने वायरस से जुड़े एकवचन रोगप्रतिकारक का उपयोग करना शुरू किया। अंत में, 1962 में, नकारात्मक रूप से सना हुआ रोगप्रतिकारक निकला।[4]


अनुप्रयोग

वाइरस

प्रतिजन इलेक्ट्रॉन सूक्ष्मदर्शिकी सफलतापूर्वक संरचना के बारे में सामान्य जानकारी प्रदान करता है लेकिन वायरस या कोशिका के अधिक विस्तृत भागों को अलग करने के लिए संघर्ष करता है। इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी वायरल संक्रमणों का निदान करने और टीकों में वायरल प्रतिजन का पता लगाने में सहायता करती है।[5]इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी पर्याप्त रूप से रोगों का निदान कर सकती है और रोगजनकों की पहचान कर सकती है। एक उदाहरण तहखाना झिल्ली पर मेलिन के विनाश को दर्शाने की इसकी क्षमता है। यह क्षति धीमी तंत्रिका आवेगों से जुड़ी हो सकती है, जिसके परिणामस्वरूप संज्ञानात्मक और शारीरिक मुद्दों की एक विस्तृत श्रृंखला होती है। एक अन्य उदाहरण में त्वचीय घावों की पहचान सम्मिलित है। इस मामले में, वैज्ञानिकों ने तहखाने की झिल्ली में अपर्याप्त एंकरिंग तंतुओं की खोज की, जिससे त्वचा अधिक नाजुक हो गई। दोनों उदाहरणों में, वैज्ञानिकों ने इन बीमारियों के बारे में अधिक जानने और जानने के लिए प्रतिरक्षा इलेक्ट्रॉन सूक्ष्मदर्शिकी का उपयोग करने के लिए लक्षित करने के लिए एक विशिष्ट प्रतिजन की पहचान की।[6]


गुर्दे की बायोप्सी

प्रारंभ में, गुर्दे की बायोप्सी में प्रतिरक्षाप्रतिदीप्ती सूक्ष्मदर्शिकी का उपयोग किया जाता था, जो इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी की तुलना में कम विश्लेषण प्रदान करता था। प्रकाश सूक्ष्मदर्शिकी से इलेक्ट्रॉन सूक्ष्मदर्शिकी पर स्विच करने से पहले, परिणामों ने दिखाया कि अधिक सटीक निदान सुनिश्चित करने के लिए अतिरिक्त इलेक्ट्रॉन सूक्ष्मदर्शिकी के लिए कॉल करने वाली कई बायोप्सी हैं। इम्यूनोइलेक्ट्रॉन सूक्ष्मदर्शिकी का अतिरिक्त उपयोग प्रारंभिक निदान करने और प्रकाश सूक्ष्मदर्शिकी के निष्कर्षों की पुष्टि करने के लिए हुआ। वैज्ञानिकों ने प्रत्येक प्रकार की सूक्ष्मदर्शिकी की प्रभावशीलता पर एक शोध अध्ययन पूरा करने का निर्णय लिया। कई मामलों में केवल प्रकाश सूक्ष्मदर्शिकी का उपयोग करते हुए, चिकित्सक प्रारंभिक निदान नहीं कर सके। कुछ का गलत निदान भी था। प्रयोग में निदान के प्रकार ने भी महत्वपूर्ण भूमिका निभाई। प्रतिदीप्ति प्रकाश सूक्ष्मदर्शिकी ने कुछ निदानों की सटीक पहचान की, जिनका पालन करने की कोई आवश्यकता नहीं है। दूसरों को अंतर करना और इलेक्ट्रॉन सूक्ष्मदर्शिकी की आवश्यकता के लिए और अधिक कठिन था। यहां तक ​​कि उन रोगियों में भी जहां प्रतिरक्षाप्रतिदीप्ती सूक्ष्मदर्शिकी ने सही परिणाम दिए, शोधकर्ताओं ने अभी भी माना कि पुष्टि की आवश्यकता थी। इस अध्ययन के परिणामों ने गुर्दे की बायोप्सी निदान के लिए प्रकाश सूक्ष्मदर्शिकी से इलेक्ट्रॉन सूक्ष्मदर्शिकी पर स्विच करने की आवश्यकता का प्रदर्शन किया।[7]


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Lodish, Harvey; Berk, Arnold; Kaiser, Chris; Krieger, Monty; Bretscher, Anthony; Ploegh, Hidde; Amon, Angelika; Martin, Kelsey (April 1, 2016). आणविक कोशिका जीव विज्ञान (8 ed.). W.H. Freeman. ISBN 978-1464183393.
  2. "कोर इलेक्ट्रॉन माइक्रोस्कोपी सुविधा - यूएमएएसएस मेडिकल स्कूल में इम्यूनो-इलेक्ट्रॉन माइक्रोस्कोपी सेवाएं". UMass Chan Medical School (in English). 2 November 2013. Retrieved 5 December 2022.
  3. 3.0 3.1 3.2 "इम्यूनोइलेक्ट्रॉन माइक्रोस्कोपी". The Human Protein Atlas.
  4. 4.0 4.1 Milne, Robert G. (1991). पादप रोगजनकों की इलेक्ट्रॉन माइक्रोस्कोपी. Springer, Berlin, Heidelberg. pp. 87–102. doi:10.1007/978-3-642-75818-8_7. ISBN 978-3-642-75818-8. S2CID 80868758. Retrieved 6 December 2022.
  5. 5.0 5.1 5.2 Gulati, Neetu M.; Torian, Udana; Gallagher, John R.; Harris, Audray K. (June 2019). "वायरल एंटीजन की इम्यूनोइलेक्ट्रॉन माइक्रोस्कोपी". Current Protocols in Microbiology. 53 (1): e86. doi:10.1002/cpmc.86. PMC 6588173. PMID 31219685.
  6. Cardones, Adela Rambi G.; Hall, Russell P. (1 January 2019). "63 - Bullous Diseases of the Skin and Mucous Membranes". क्लिनिकल इम्यूनोलॉजी (in English) (5 ed.). Elsevier. pp. 857–870.e1. ISBN 978-0-7020-6896-6. Retrieved 6 December 2022.
  7. Haas, M. (1 January 1997). "देशी गुर्दे की बायोप्सी की परीक्षा में नियमित इलेक्ट्रॉन माइक्रोस्कोपी का पुनर्मूल्यांकन।". Journal of the American Society of Nephrology (in English). 8 (1): 70–76. doi:10.1681/ASN.V8170. ISSN 1046-6673. PMID 9013450. S2CID 26970189. Retrieved 6 December 2022.