परमाणु चतुष्कोण अनुनाद

From Vigyanwiki

परमाणु चतुष्कोण अनुनाद स्पेक्ट्रम विज्ञान या एनक्यूआर परमाणु चुंबकीय अनुनादी से संबंधित एक रासायनिक विश्लेषण प्रोद्योगिकीय के रूप में होता है। एनएमआर के विपरीत, चुंबकीय क्षेत्र की अनुपस्थिति में नाभिक के एनक्यूआर पारगमन का पता लगाया जा सकता है और इस कारण से एनक्यूआर स्पेक्ट्रोस्कोपी को शून्य क्षेत्र एनएमआर कहा जाता है। एनक्यूआर अनुनाद परमाणु आवेश वितरण के चतुर्ध्रुव क्षण के साथ विद्युत क्षेत्र की प्रवणता (ईएफजी) की क्रिया से मध्यस्थता करता है। एनएमआर के विपरीत, एनक्यूआर केवल ठोस पदार्थों पर ही लागू होता है, तरल पदार्थों पर नहीं, क्योंकि तरल पदार्थों में नाभिक औसत पर विद्युत क्षेत्र की प्रवणता का मापन एक प्रकार से ईएफजी टेंसर ट्रेसलेस की जांच के रूप में की जाती है। क्योंकि किसी दिए गए पदार्थ में एक नाभिक के स्थान पर ईएफजी मुख्य रूप से अन्य निकटवर्ती नाभिकों के साथ विशेष बंधन के रूप में सम्मलित होता है इस प्रकार अणु की संयोजन क्षमता निर्धारित की जाती है, एनक्यूआर आवृत्ति जिस पर पारगमन होता है वह किसी दिए गए पदार्थ के लिए अद्वितीय रूप में होता है। एक यौगिक या क्रिस्टल में एक विशेष एनक्यूआर आवृत्ति परमाणु चतुष्कोणीय क्षण नाभिक के एक गुणधर्म और नाभिक के निकटतम में ईएफजी के उत्पाद के समानुपाती होती है। यह वह उत्पाद के रूप में है जिसे एक पदार्थ में दिए गए आइसोटोप के लिए परमाणु चतुष्कोण युग्मन स्थिरांक कहा जाता है और इसे ज्ञात एनक्यूआर पारगमन की तालिकाओं में पाया जा सकता है। एनएमआर में एक समान एक जैसी नहीं होने वाली घटना युग्मन स्थिरांक के रूप में होता है, जो विश्लेषण में नाभिक के बीच एक आंतरिक परमाणु अन्योन्य क्रिया का परिणाम के रूप में है।

सिद्धांत

परमाणु कण प्रोटॉन या न्यूट्रॉन वाले एक से अधिक अयुग्मित नाभिक का आवेश के रूप में वितरण होता है, जिसके परिणामस्वरूप एक विद्युत चतुष्कोणीय आघूर्ण होता है। इलेक्ट्रॉन घनत्व के गैर-समान वितरण के रूप में होता है, जैसे बंधन इलेक्ट्रॉनों या आसपास के आयनों द्वारा आपूर्ति किए गए विद्युत क्षेत्र की प्रवणता के साथ नाभिकीय ऊर्जा की अन्योन्य क्रिया के कारण अनुमत नाभिकीय ऊर्जा के स्तर को असमान रूप से स्थानांतरित किया जाता है। जैसा कि एनएमआर के स्थिति में होता है और इस प्रकार आरएफ विद्युत चुम्बकीय विकिरण के विस्फोट से नाभिक कुछ ऊर्जा का अवशोषण कर सकता है, जिसे चतुष्कोणीय ऊर्जा स्तर के क्षोभ सिद्धांत के रूप में देखा जा सकता है। एनएमआर स्थितियों के विपरीत, बाहरी चुंबकीय क्षेत्र की अनुपस्थिति में एनक्यूआर का अवशोषण होता है। एक चतुष्कोणीय नाभिक के लिए एक बाहरी स्थैतिक क्षेत्र का अनुप्रयोग जीमैन अन्योन्य क्रिया से अनुमानित ऊर्जा द्वारा चतुष्कोणीय स्तरों को विभाजित करता है। प्रोद्योगिकीय नाभिक के चारों ओर बंधन की प्रकृति और समरूपता के प्रति बहुत संवेदनशील रूप में होते है। और इस प्रकार अलग-अलग तापमान पर किए जाने पर यह ठोस पदार्थों में चरण पारगमन को चिह्नित कर सकता है। और समरूपता के कारण तरल चरण में बदलाव औसतन शून्य के रूप में हो जाता है, इसलिए एनक्यूआर स्पेक्ट्रा को केवल ठोस पदार्थों के लिए मापा जा सकता है।

एनएमआर के साथ समानता

एनएमआर के स्थितियों े में, स्पिन (भौतिकी) ≥ 1/2 के साथ नाभिक में एक चुंबकीय द्विध्रुवीय पल होता है जिससे कि उनकी ऊर्जा एक चुंबकीय क्षेत्र से विभाजित हो जाए, जिससे लार्मर प्रीसेशन # लार्मर आवृत्ति से संबंधित ऊर्जा के अनुनाद अवशोषण की अनुमति मिलती है:

कहाँ जाइरोमैग्नेटिक अनुपात है और नाभिक के बाहर (सामान्य रूप से लागू) चुंबकीय क्षेत्र है।

एनक्यूआर के स्थितियों े में, स्पिन ≥ 1 के साथ नाभिक, जैसे 14नाइट्रोजन, ऑक्सीजन-17|17हे, 35क्लोरीन और 63तांबा, एक क्वाड्रुपोल#इलेक्ट्रिक क्वाड्रुपोल भी है। परमाणु चतुष्कोणीय क्षण गैर-गोलाकार परमाणु आवेश वितरण से जुड़ा है। जैसे कि यह उस डिग्री का माप है जिस पर नाभिकीय आवेश वितरण एक गोले से विचलित होता है; वह है, नाभिक का उपगोल या स्फेरॉइड आकार। एनक्यूआर अपने पर्यावरण की इलेक्ट्रॉनिक संरचना द्वारा निर्मित स्थानीय विद्युत क्षेत्र ढाल | इलेक्ट्रिक फील्ड ग्रेडिएंट (ईएफजी ) के साथ चतुष्कोणीय क्षण की क्रिया का प्रत्यक्ष अवलोकन है। एनक्यूआर पारगमन आवृत्तियाँ नाभिक के विद्युत चतुर्भुज क्षण के उत्पाद के समानुपाती होती हैं और स्थानीय ईएफजी की शक्ति का एक माप होती हैं:

जहाँ q नाभिक में ईएफजी टेंसर के सबसे बड़े प्रमुख घटक से संबंधित है। चतुर्ध्रुव युग्मन स्थिरांक के रूप में जाना जाता है।

सिद्धांत रूप में, एनक्यूआर प्रयोगकर्ता प्रभावित करने के लिए एक निर्दिष्ट ईएफजी लागू कर सकता है जैसे NMR प्रयोगकर्ता चुंबकीय क्षेत्र को समायोजित करके Larmor आवृत्ति चुनने के लिए स्वतंत्र है। चूंकि , ठोस पदार्थों में, ईएफजी की ताकत कई केवी/एम ^ 2 है, एनक्यूआर के लिए ईएफजी के आवेदन को इस विधियों े से बनाते हैं कि बाहरी चुंबकीय क्षेत्रों को एनएमआर अव्यावहारिक के लिए चुना जाता है। परिणामस्वरुप , पदार्थ का एनक्यूआर स्पेक्ट्रम पदार्थ के लिए विशिष्ट है - और एनक्यूआर स्पेक्ट्रम एक तथाकथित रासायनिक फिंगरप्रिंट है। क्योंकि एनक्यूआर आवृत्तियों को प्रयोगकर्ता द्वारा नहीं चुना जाता है, इसलिए उन्हें एनक्यूआर को प्रोद्योगिकीय ी रूप से कठिन प्रोद्योगिकीय बनाने में कठिन हो सकती है। चूँकि एनक्यूआर स्थिर (या DC) चुंबकीय क्षेत्र के बिना वातावरण में किया जाता है, इसे कभी-कभी शून्य क्षेत्र NMR कहा जाता है। कई एनक्यूआर पारगमन आवृत्तियाँ तापमान पर दृढ़ता से निर्भर करती हैं।

अनुनाद आवृत्ति की व्युत्पत्ति[1]

गैर-शून्य चतुष्कोणीय आघूर्ण वाले नाभिक पर विचार करें और चार्ज घनत्व , जो एक संभावना से घिरा हुआ है . जैसा कि ऊपर कहा गया है, यह क्षमता इलेक्ट्रॉनों द्वारा उत्पादित की जा सकती है, जिसका संभाव्यता वितरण सामान्य रूप से गैर-आइसोट्रोपिक हो सकता है। इस प्रणाली में संभावित ऊर्जा चार्ज वितरण पर अभिन्न अंग के बराबर होती है और संभावित एक डोमेन के भीतर :

टेलर श्रृंखला | टेलर-विस्तार के रूप में विचार किए गए नाभिक के केंद्र में क्षमता लिख ​​सकते हैं। यह विधि कार्तीय निर्देशांक में मल्टीपोल विस्तार से मेल खाती है (ध्यान दें कि नीचे दिए गए समीकरण आइंस्टीन योग-सम्मेलन का उपयोग करते हैं):

पहला कार्यकाल सम्मलित है प्रासंगिक नहीं होगा और इसलिए छोड़ा जा सकता है। चूंकि नाभिक में वैद्युत द्विध्रुव आघूर्ण नहीं होता है , जो विद्युत क्षेत्र के साथ परस्पर क्रिया करेगा , पहले डेरिवेटिव को भी उपेक्षित किया जा सकता है। इसलिए एक दूसरे डेरिवेटिव के सभी नौ संयोजनों के साथ बचा है। चूँकि , यदि कोई सजातीय चपटा या फैला हुआ नाभिक मैट्रिक्स से संबंधित है विकर्ण और तत्व होंगे गायब होना। यह एक सरलीकरण की ओर जाता है क्योंकि संभावित ऊर्जा के समीकरण में अब समान चर के संबंध में केवल दूसरा डेरिवेटिव होता है:

समाकलन में शेष पद आवेश वितरण से संबंधित हैं और इसलिए चतुष्कोणीय आघूर्ण। विद्युत क्षेत्र प्रवणता का परिचय देकर सूत्र को और भी सरल बनाया जा सकता है , z-अक्ष को अधिकतम प्रमुख घटक वाले एक के रूप में चुनना और लाप्लास के समीकरण का उपयोग करके ऊपर लिखी गई समानुपातिकता प्राप्त करना। एक के लिए नाभिक एक प्लैंक-आइंस्टीन संबंध | आवृत्ति-ऊर्जा संबंध के साथ प्राप्त करता है :


अनुप्रयोग

विस्फोटकों का पता लगाने के लिए एनक्यूआर का उपयोग करने के विधियों ों पर वर्तमान में दुनिया भर में कई शोध समूह काम कर रहे हैं। बारूदी सुरंगों का पता लगाने के लिए डिज़ाइन की गई इकाइयाँ[2] और सामान में छुपाकर रखे गए विस्फोटकों का परीक्षण किया गया है। एक डिटेक्शन सिस्टम में एक रेडियो फ़्रीक्वेंसी (RF) शक्ति स्रोत, चुंबकीय उत्तेजना क्षेत्र उत्पन्न करने के लिए एक कॉइल और एक डिटेक्टर सर्किट होता है जो ऑब्जेक्ट के विस्फोटक घटक से आने वाली RF एनक्यूआर प्रतिक्रिया की निगरानी करता है।

ADE 651 ने विस्फोटकों का पता लगाने के लिए एनक्यूआर का लाभ उठाने का प्रमाणित किया लेकिन वास्तव में ऐसा कुछ नहीं कर सका। फिर भी, इस उपकरण को इराक की सरकार सहित लाखों से दर्जनों देशों में सफलतापूर्वक बेचा गया था।

एनक्यूआर के लिए एक अन्य व्यावहारिक उपयोग वास्तविक समय में तेल के कुएं से निकलने वाले पानी/गैस/तेल को मापना है। यह विशेष प्रोद्योगिकीय निष्कर्षण प्रक्रिया की स्थानीय या दूरस्थ निगरानी की अनुमति देती है, कुएं की शेष क्षमता की गणना और पानी/डिटर्जेंट अनुपात इनपुट पंप को कुशलतापूर्वक तेल निकालने के लिए भेजना चाहिए।[citation needed]

एनक्यूआर आवृत्ति की मजबूत तापमान निर्भरता के कारण, इसे 10 के क्रम में सेंसर संकल्प # संकल्प के साथ एक यथार्थ तापमान संवेदक के रूप में उपयोग किया जा सकता है-4</सुप> डिग्री सेल्सियस।[3]


संदर्भ

  1. Smith, J. A. S. (January 1971). "परमाणु क्वाड्रुपोल अनुनाद स्पेक्ट्रोस्कोपी". Journal of Chemical Education. 48: 39–41. doi:10.1021/ed048p39.
  2. Appendix K: Nuclear quadrupole resonance, by Allen N. Garroway, Naval Research Laboratory. In Jacqueline MacDonald, J. R. Lockwood: Alternatives for Landmine Detection. Report MR-1608, Rand Corporation, 2003.
  3. Leigh, James R. (1988). तापमान माप और नियंत्रण. London: Peter Peregrinus Ltd. p. 48. ISBN 0-86341-111-8.