त्रिकोणमिति स्मृति सहायक

From Vigyanwiki
Revision as of 16:39, 19 April 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

त्रिकोणमिति में, त्रिकोणमितीय सर्वसमिका और विभिन्न त्रिकोणमितीय फलानो के मध्य संबंधों को याद रखने में सहायता करने के लिए स्मृति का उपयोग करना सामान्य है।

एसओएच-सीएएच-टीओए

एक समकोण त्रिभुज की भुजाओं के अनुपात को याद रखने में मदद करने के लिए छवि स्मरक

एक समकोण त्रिभुज में ज्या, कोज्या और स्पर्शरेखा अनुपात को अक्षरों के श्रृंखला के रूप में प्रस्तुत करके स्मरण किया जा सकता है, उदाहरण के लिए अंग्रेजी में SOH-CAH-TOA:

ज्या = विपरीत ÷ कर्ण
कोज्या = आसन्न ÷ कर्ण
स्पर्शरेखा = विपरीत ÷ आसन्न

अक्षरों को याद रखने का एक प्रकार उन्हें ध्वन्यात्मक रूप से बोलना है (अर्थात /ˌskəˈtə/ SOH-kə-TOH, Krakatoa के समान)।[1]

वाक्यांश

एक अन्य विधि अक्षरों को एक वाक्य में विस्तारित करना है, जैसे ''कुछ पुराने घोड़े सेब को बुढ़ापे में खुशी से चबाते हैं'', ''कुछ पुराने हिप्पी ने अम्ल पर एक और हिप्पी को पकड़ लिया'', या ''हमारे गृहकार्य का अध्ययन हमेशा उपलब्धि प्राप्त करने में सहायता कर सकता है''। क्रम को परिवर्तित किया जा सकता है, जैसा कि टॉमी ने एक जहाज पर एक हेरिंग पकड़ी (स्पर्शरेखा, ज्या, कोज्या) या ''सेना के बूढ़े कर्नल और उनके बेटे को प्रायः हिचकी आती है'' (स्पर्शरेखा, कोज्या, ज्या) या ''आओ और संतरे खाओ भूलने की बीमारी पर जीत पाने में सहायता'' (कोज्या, ज्या, स्पर्शरेखा)।[2][3] चीनी वृत्त में समाज इसे TOA-CAH-SOH के रूप में स्मरण करके चयन कर सकता हैं, जिसका अर्थ होक्किन में 'बड़े पैरों वाली स्त्री' (Chinese: 大腳嫂; Pe̍h-ōe-jī: tōa-kha-só) भी है।[citation needed]

सिन, कॉस और टैन के अक्षरों को याद रखने का एक वैकल्पिक प्रकार ओह, आह, ओह-आह (अर्थात / ə ˈ.ə/) ओ/एच, ए/एच, ओ/ए निरर्थक अक्षरों को याद करना है। [4] इन पत्रों के लिए लंबे स्मृति चिन्हों में ''एंजी पर ऑस्कर की पकड़ है'' और ''ऑस्कर के पास अत्यधिक सेब'' सम्मिलित हैं।[2]

सभी छात्र गणना लेते हैं

प्रत्येक चतुर्थांश में त्रिकोणमितीय फलानो के संकेत।

सभी छात्र गणना लेते हैं, सतह के प्रत्येक चतुर्भुज में प्रत्येक त्रिकोणमितीय फलानो के संकेत के लिए एक स्मरक है। एएसटीसी अक्षर सूचित करते हैं कि त्रिकोणमितीय फलानो में से कौन सा सकारात्मक है, श्रेष्ठतम दाएं पहले चतुर्भुज में आरम्भ होता है और चतुर्भुज 2 से 4 के माध्यम से वामावर्त चलता है।

  • चतुर्थांश I (0 से 90 डिग्री के कोण, या 0 से π/2 रेडियन): इस चतुर्थांश में सभी त्रिकोणमितीय फलन धनात्मक होते हैं।
  • चतुर्थांश II (90 से 180 डिग्री के कोण, या π/2 से π रेडियन): इस चतुर्थांश में ज्या और व्युत्क्रमज्या फलन धनात्मक होते हैं।
  • चतुर्थांश III (180 से 270 डिग्री के कोण, या π से 3π/2 रेडियन): इस चतुर्थांश में स्पर्शरेखा और कोटिस्पर्श रेखा फलन धनात्मक होते हैं।
  • चतुर्थांश IV (270 से 360 डिग्री के कोण, या 3π/2 से 2π रेडियन): इस चतुर्थांश में कोज्या और सीकेन्ट फलन धनात्मक होते हैं।

अन्य स्मृति चिन्हों में सम्मिलित हैं:

  • केंद्र के सभी स्टेशन[5]
  • सभी मूर्ख टॉम बिल्लियाँ[5]
  • कॉफी में चीनी मिलाएं[5]
  • सभी विज्ञान शिक्षक सनकी हैं[6]
  • एक बुद्धिमान ट्रिग वर्ग[7]

अन्य आसानी से याद रखने वाले स्मरक अधिनियम और प्रकार विधि हैं। इनमें चतुर्थांश 1 से 4 तक क्रमिक रूप से नहीं जाने और चतुर्थांशों के क्रमांक सम्मेलन को प्रबलन नहीं करने की हानि हैं।

  • प्रकार अभी भी वामावर्त जाता है लेकिन चतुर्थांश 4 में आरम्भ होता है और चतुर्थांश 4, 1, 2, फिर 3 के माध्यम से जाता है।
  • अधिनियम अभी भी चतुर्थांश 1 में आरम्भ होता है, लेकिन चतुर्थांश 1, 4, 3, फिर 2 से दक्षिणावर्त जाता है।

विशेष कोणों की ज्या और कोज्या

0°, 30°, 45°, 60° और 90° उभयनिष्ठ कोणों की ज्या और कोज्या (θ = 0°, 30°, 45°, 60°, 90°) ज्या (ज्या θ) के लिए n = 0, 1, ..., 4 और कोज्या (कोज्या θ) के लिए n = 4, 3, ..., 0 के साथ प्रतिरुप का अनुकरण करते है। क्रमश:[8]

0° = 0 radians
30° = π/6 radians
45° = π/4 radians
60° = π/3 radians
90° = π/2 radians undefined

षट्कोण लेखाचित्र

त्रिकोणमितीय सर्वसमिका स्मरक

एक और स्मरक सभी मूल सर्वसमिका को तीव्रता से पढ़ने की अनुमति देते है। षट्कोणीय लेखाचित्र का निर्माण अल्प विचार के साथ किया जा सकता है:[9]

  1. नीचे की ओर इंगित करते हुए तीन त्रिभुज बनाएँ, एक ही बिंदु पर स्पर्श करें। यह एक फालआउट आश्रय त्रिपर्ण जैसा दिखता है।
  2. मध्य में 1 लिखें जहां तीन त्रिकोण स्पर्श करते है।
  3. तीन बाएँ बाहरी कोने पर '' co'' के बिना फलन लिखें (ऊपर से नीचे: साइन, स्पर्शरेखा, सीकेन्ट)
  4. सह-फलानो को संबंधित तीन दाहिने बाहरी शीर्षों पर (कोज्या, कॉटैंजेंट, व्युत्क्रमज्या) लिखें

परिणामी षट्भुज के किसी भी शीर्ष पर प्रारंभ:

  • प्रारंभिक शीर्ष एक अधिक विपरीत शीर्ष के समान होता है। उदाहरण के लिए,
  • दक्षिणावर्त या वामावर्त जाने पर, आरंभिक शीर्ष उसके बाद के शीर्ष द्वारा विभाजित अगले शीर्ष के समान होता है। उदाहरण के लिए,
  • आरंभिक कोने अपने दो निकट पड़ोसियों के उत्पाद के समान है। उदाहरण के लिए,
  • त्रिकोण के शीर्ष पर स्थित दो वस्तुओं के वर्गों का योग नीचे की वस्तु के वर्ग के समान होता है। ये त्रिकोणमितीय पायथागॉरियन सर्वसमिका हैं:

अंतिम गोली के अलावा, प्रत्येक पहचान के लिए विशिष्ट मानों को इस तालिका में संक्षेपित किया गया है:

Starting function ... equals 1/opposite ... equals first/second clockwise ... equals first/second counter-clockwise/anticlockwise ... equals the product of two nearest neighbors

यह भी देखें

संदर्भ

  1. Humble, Chris (2001). Key Maths : GCSE, Higher. Fiona McGill. Cheltenham: Stanley Thornes Publishers. p. 51. ISBN 0-7487-3396-5. OCLC 47985033.
  2. 2.0 2.1 Weisstein, Eric W. "SOHCAHTOA". MathWorld.
  3. Foster, Jonathan K. (2008). Memory: A Very Short Introduction. Oxford. p. 128. ISBN 978-0-19-280675-8.
  4. Weisstein, Eric W. "Trigonometry". MathWorld.
  5. 5.0 5.1 5.2 "चार चतुर्भुजों में साइन, कोसाइन और स्पर्शरेखा". Archived from the original on 2015-01-18. Retrieved 2015-01-18.
  6. Heng, Cheng and Talbert, "Additional Mathematics", page 228
  7. "त्रिकोणमिति के लिए गणित निमोनिक्स और गाने". Retrieved 2019-10-17.
  8. Ron Larson, Precalculus with Limits: A Graphing Approach, Texas Edition
  9. "ट्रिग आइडेंटिटी के लिए मैजिक हेक्सागोन". Math is Fun.