सॉफ्ट एरर

From Vigyanwiki
Revision as of 22:17, 28 March 2023 by alpha>Indicwiki (Created page with "{{Distinguish|software error}} {{Refimprove|date=November 2011}} {{Use dmy dates|date=March 2020|cs1-dates=y}} इलेक्ट्रानिक्स और क...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

इलेक्ट्रानिक्स और कम्प्यूटिंग में, सॉफ्ट एरर एक प्रकार की एरर होती है, जहां सिग्नल या डेटम गलत होता है। त्रुटियां विक्ट: दोष के कारण हो सकती हैं, आमतौर पर या तो डिजाइन या निर्माण में गलती, या टूटा हुआ घटक समझा जाता है। एक नरम त्रुटि भी एक संकेत या डेटा है जो गलत है, लेकिन ऐसी गलती या टूट-फूट का संकेत नहीं माना जाता है। एक नरम त्रुटि देखने के बाद, इसका कोई निहितार्थ नहीं है कि सिस्टम पहले की तुलना में कम विश्वसनीय है। सॉफ्ट एरर का एक कारण ब्रह्मांड किरणों से परेशान एकल घटना है।

कंप्यूटर के मेमोरी सिस्टम में, एक सॉफ्ट एरर प्रोग्राम या डेटा वैल्यू में निर्देश को बदल देता है। सॉफ्ट त्रुटियों को आमतौर पर कंप्यूटर को कोल्ड बूटिंग करके ठीक किया जा सकता है। एक सॉफ्ट एरर सिस्टम के हार्डवेयर को नुकसान नहीं पहुंचाएगा; एकमात्र नुकसान उस डेटा को है जिसे संसाधित किया जा रहा है।

सॉफ्ट एरर दो प्रकार के होते हैं, चिप-लेवल सॉफ्ट एरर और सिस्टम-लेवल सॉफ्ट एरर। चिप-स्तर की नरम त्रुटियां तब होती हैं जब कण चिप से टकराते हैं, उदाहरण के लिए, जब कॉस्मिक किरण से वायु बौछार (भौतिकी) डाई (एकीकृत सर्किट) पर उतरती है। यदि सॉफ्ट एरर # क्रिटिकल चार्ज वाला कोई कण मेमोरी सेल (कंप्यूटिंग) से टकराता है, तो यह सेल को एक अलग मान में स्थिति बदलने का कारण बन सकता है। इस उदाहरण में परमाणु प्रतिक्रिया इतनी छोटी है कि यह चिप की भौतिक संरचना को नुकसान नहीं पहुंचाती है। सिस्टम-स्तरीय सॉफ्ट त्रुटियां तब होती हैं जब संसाधित किया जा रहा डेटा शोर घटना से प्रभावित होता है, आमतौर पर जब डेटा डेटा बस में होता है। कंप्यूटर शोर को डेटा बिट के रूप में समझने की कोशिश करता है, जिससे प्रोग्राम कोड को संबोधित करने या संसाधित करने में त्रुटियां हो सकती हैं। खराब डेटा बिट को स्मृति में भी सहेजा जा सकता है और बाद में समस्याएं पैदा कर सकता है।

यदि पता चला है, तो गलत डेटा के स्थान पर सही डेटा को फिर से लिखकर एक सॉफ्ट एरर को ठीक किया जा सकता है। अत्यधिक विश्वसनीय प्रणालियाँ चलते-फिरते नरम त्रुटियों को ठीक करने के लिए त्रुटि सुधार का उपयोग करती हैं। हालांकि, कई प्रणालियों में, सही डेटा निर्धारित करना असंभव हो सकता है, या यहां तक ​​कि यह पता लगाना भी कि कोई त्रुटि मौजूद है। इसके अलावा, सुधार होने से पहले, सिस्टम क्रैश (कंप्यूटिंग) हो सकता है, जिस स्थिति में पुनर्प्राप्ति प्रक्रिया में रिबूट (कंप्यूटर) शामिल होना चाहिए। सॉफ्ट एरर में डेटा में बदलाव शामिल हैं‍—‌एक भंडारण परिपथ में इलेक्ट्रॉनों, उदाहरण के लिए‍—‌लेकिन स्वयं भौतिक परिपथ, परमाणुओं में परिवर्तन नहीं होता है। यदि डेटा को दोबारा लिखा जाता है, तो सर्किट फिर से पूरी तरह से काम करेगा। डिजिटल लॉजिक, एनालॉग सर्किट, मैग्नेटिक स्टोरेज और अन्य जगहों पर सॉफ्ट एरर ट्रांसमिशन लाइनों पर हो सकते हैं, लेकिन आमतौर पर सेमीकंडक्टर स्टोरेज में जाने जाते हैं।

क्रिटिकल चार्ज

एक सर्किट एक नरम त्रुटि का अनुभव करता है या नहीं, आने वाले कण की ऊर्जा, प्रभाव की ज्यामिति, हड़ताल का स्थान और तर्क सर्किट के डिजाइन पर निर्भर करता है। उच्च समाई और उच्च तर्क वोल्टेज वाले लॉजिक सर्किट में त्रुटि होने की संभावना कम होती है। कैपेसिटेंस और वोल्टेज के इस संयोजन को क्रिटिकल बिजली का आवेश पैरामीटर, क्यू द्वारा वर्णित किया गया हैcritतर्क स्तर को बदलने के लिए आवश्यक न्यूनतम इलेक्ट्रॉन आवेश गड़बड़ी। एक उच्च Qcrit मतलब कम सॉफ्ट एरर। दुर्भाग्य से, एक उच्च Qcrit इसका मतलब एक धीमा लॉजिक गेट और एक उच्च शक्ति अपव्यय भी है। चिप फीचर आकार और आपूर्ति वोल्टेज में कमी, कई कारणों से वांछनीय, क्यू घट जाती हैcrit. इस प्रकार, चिप प्रौद्योगिकी की प्रगति के रूप में नरम त्रुटियों का महत्व बढ़ जाता है।

लॉजिक सर्किट में, Qcrit एक सर्किट नोड पर आवश्यक प्रेरित चार्ज की न्यूनतम मात्रा के रूप में परिभाषित किया जाता है, जिससे वोल्टेज पल्स उस नोड से आउटपुट तक फैलता है और पर्याप्त अवधि और परिमाण का विश्वसनीय रूप से लैच किया जा सकता है। चूँकि एक लॉजिक सर्किट में कई नोड होते हैं जो टकरा सकते हैं, और प्रत्येक नोड अद्वितीय समाई और आउटपुट से दूरी का हो सकता है, क्यूcrit आमतौर पर प्रति-नोड के आधार पर विशेषता होती है।

सॉफ्ट एरर के कारण

पैकेज क्षय से अल्फा कण

1970 के दशक में गतिशील रैम की शुरुआत के साथ सॉफ्ट एरर व्यापक रूप से ज्ञात हो गए। इन शुरुआती उपकरणों में, सिरेमिक चिप पैकेजिंग सामग्री में थोड़ी मात्रा में रेडियोधर्मी संदूषक होते थे। अत्यधिक नरम त्रुटियों से बचने के लिए बहुत कम क्षय दर की आवश्यकता होती है, और तब से चिप कंपनियों को कभी-कभी संदूषण की समस्या का सामना करना पड़ा है। आवश्यक भौतिक शुद्धता को बनाए रखना अत्यंत कठिन है। महत्वपूर्ण पैकेजिंग सामग्री के लिए अल्फा कण उत्सर्जन दर को 0.001 गणना प्रति घंटे प्रति सेमी से कम के स्तर पर नियंत्रित करना2 (सीपीएच/सेमी2) अधिकांश सर्किटों के विश्वसनीय प्रदर्शन के लिए आवश्यक है। तुलना के लिए, एक सामान्य जूते के तलवे की गणना दर 0.1 और 10 cph/cm के बीच होती है2</उप>।

पैकेज रेडियोधर्मी क्षय आमतौर पर अल्फा कण उत्सर्जन द्वारा नरम त्रुटि का कारण बनता है। सकारात्मक आवेशित अल्फा कण अर्धचालक के माध्यम से यात्रा करता है और वहां इलेक्ट्रॉनों के वितरण को बाधित करता है। यदि गड़बड़ी काफी बड़ी है, तो एक डिजिटल डेटा सिग्नल (सूचना सिद्धांत) 0 से 1 या इसके विपरीत बदल सकता है। संयोजन तर्क में, यह प्रभाव क्षणिक होता है, शायद नैनोसेकंड के एक अंश तक रहता है, और इसके कारण कॉम्बिनेशन लॉजिक में सॉफ्ट एरर की चुनौती पर ध्यान नहीं दिया जाता है। कुंडी (इलेक्ट्रॉनिक) और रैंडम एक्सेस मेमोरी जैसे अनुक्रमिक तर्क में, यह क्षणिक गड़बड़ी भी अनिश्चित समय के लिए संग्रहीत हो सकती है, जिसे बाद में पढ़ा जा सकता है। इस प्रकार, डिजाइनर आमतौर पर स्टोरेज सर्किट में समस्या के बारे में अधिक जागरूक होते हैं।

2011 का ब्लैक हैट ब्रीफिंग पेपर इंटरनेट के डोमेन की नामांकन प्रणाली में इस तरह के बिट-फ्लिप के वास्तविक जीवन के सुरक्षा प्रभावों पर चर्चा करता है। विभिन्न सामान्य डोमेन के लिए बिट-फ्लिप परिवर्तनों के कारण प्रति दिन 3,434 गलत अनुरोधों तक पेपर पाया गया। इनमें से कई बिट-फ्लिप शायद हार्डवेयर समस्याओं के कारण हो सकते हैं, लेकिन कुछ को अल्फा कणों के लिए जिम्मेदार ठहराया जा सकता है।[1] bitsquating के रूप में दुर्भावनापूर्ण अभिनेताओं द्वारा इन बिट-फ्लिप त्रुटियों का लाभ उठाया जा सकता है।

इसहाक असिमोव को 1950 के दशक के उपन्यास में अल्फा-पार्टिकल रैम त्रुटियों की आकस्मिक भविष्यवाणी पर उन्हें बधाई देने वाला एक पत्र मिला।[2]


ऊर्जावान न्यूट्रॉन और प्रोटॉन बनाने वाली ब्रह्मांडीय किरणें

एक बार इलेक्ट्रॉनिक्स उद्योग ने यह निर्धारित कर लिया कि पैकेज संदूषकों को कैसे नियंत्रित किया जाए, यह स्पष्ट हो गया कि अन्य कारण भी काम कर रहे थे। जेम्स एफ. ज़िगलर ने आईबीएम में काम के एक कार्यक्रम का नेतृत्व किया, जिसकी परिणति कई पत्रों (ज़ीग्लर और लैनफोर्ड, 1979) के प्रकाशन में हुई, जिसमें दिखाया गया कि ब्रह्मांडीय किरणें भी नरम त्रुटियां पैदा कर सकती हैं। दरअसल, आधुनिक उपकरणों में कॉस्मिक किरणें प्रमुख कारण हो सकती हैं। यद्यपि ब्रह्मांडीय किरण का प्राथमिक कण आम तौर पर पृथ्वी की सतह तक नहीं पहुंचता है, यह ऊर्जावान माध्यमिक कणों की वायु बौछार (भौतिकी) बनाता है। पृथ्वी की सतह पर नरम त्रुटियों को पैदा करने में सक्षम कणों का लगभग 95% ऊर्जावान न्यूट्रॉन हैं, शेष प्रोटॉन और पियोन से बना है।[3] आईबीएम ने 1996 में अनुमान लगाया था कि एक डेस्कटॉप कंप्यूटर के लिए प्रति 256 MiB RAM प्रति माह एक त्रुटि अपेक्षित थी।[4]ऊर्जावान न्यूट्रॉन के इस प्रवाह को आम तौर पर नरम त्रुटि साहित्य में ब्रह्मांडीय किरणों के रूप में जाना जाता है। न्यूट्रॉन अनावेशित होते हैं और अपने आप एक सर्किट को परेशान नहीं कर सकते हैं, लेकिन एक चिप में एक परमाणु के नाभिक द्वारा न्यूट्रॉन कैप्चर कब्जा कर लेते हैं। इस प्रक्रिया के परिणामस्वरूप आवेशित सेकेंडरी का उत्पादन हो सकता है, जैसे कि अल्फा कण और ऑक्सीजन नाभिक, जो तब नरम त्रुटियाँ पैदा कर सकते हैं।

कॉस्मिक किरण प्रवाह ऊंचाई पर निर्भर करता है। समुद्र तल पर 40.7°N, 74°W (न्यूयॉर्क शहर, NY, USA) के सामान्य संदर्भ स्थान के लिए फ्लक्स लगभग 14 न्यूट्रॉन/सेमी है2/घंटा। एक प्रणाली को एक गुफा में दफनाने से कॉस्मिक-रे प्रेरित सॉफ्ट एरर की दर नगण्य स्तर तक कम हो जाती है। वायुमंडल के निचले स्तरों में, समुद्र तल से ऊंचाई में प्रत्येक 1000 मीटर (1.3 प्रति 1000 फीट) वृद्धि के लिए प्रवाह लगभग 2.2 गुना बढ़ जाता है। पहाड़ों की चोटी पर संचालित कंप्यूटर समुद्र तल की तुलना में नरम त्रुटियों की उच्च दर के परिमाण का अनुभव करते हैं। विमान में उतार-चढ़ाव की दर समुद्र तल से 300 गुना अधिक हो सकती है। यह पैकेज क्षय प्रेरित सॉफ्ट एरर के विपरीत है, जो स्थान के साथ नहीं बदलते हैं।[5] मूर के नियम के अनुसार, इंटेल को उम्मीद है कि ब्रह्मांडीय किरणों के कारण होने वाली त्रुटियां बढ़ जाएंगी और डिजाइन में एक सीमित कारक बन जाएंगी।[4] कॉस्मिक-रे सॉफ्ट एरर की औसत दर सनस्पॉट गतिविधि के व्युत्क्रमानुपाती होती है। अर्थात्, सौर कलंक चक्र के सक्रिय भाग के दौरान कॉस्मिक-रे सॉफ्ट त्रुटियों की औसत संख्या घट जाती है और शांत भाग के दौरान बढ़ जाती है। यह प्रति-सहज ज्ञान युक्त परिणाम दो कारणों से होता है। सूर्य आम तौर पर 1 GeV से अधिक ऊर्जा वाले ब्रह्मांडीय किरण कणों का उत्पादन नहीं करता है जो पृथ्वी के ऊपरी वायुमंडल में प्रवेश करने और कणों की बौछार बनाने में सक्षम हैं, इसलिए सौर प्रवाह में परिवर्तन सीधे त्रुटियों की संख्या को प्रभावित नहीं करते हैं। इसके अलावा, एक सक्रिय सूर्य अवधि के दौरान सौर प्रवाह में वृद्धि से पृथ्वी के चुंबकीय क्षेत्र को फिर से आकार देने का प्रभाव पड़ता है, जो उच्च ऊर्जा वाली ब्रह्मांडीय किरणों के खिलाफ कुछ अतिरिक्त परिरक्षण प्रदान करता है, जिसके परिणामस्वरूप बारिश पैदा करने वाले कणों की संख्या में कमी आती है। न्यूयॉर्क शहर में ऊर्जावान न्यूट्रॉन प्रवाह के ± 7% मॉडुलन के परिणामस्वरूप प्रभाव किसी भी मामले में काफी छोटा है। अन्य स्थान इसी तरह प्रभावित हैं।[citation needed]

एक प्रयोग ने प्रति DRAM चिप में समय में 5,950 विफलता (FIT = प्रति अरब घंटे की विफलता) के रूप में समुद्र तल पर नरम त्रुटि दर को मापा। जब उसी परीक्षण सेटअप को एक भूमिगत तिजोरी में ले जाया गया, जिसे ओवर द्वारा परिरक्षित किया गया था 50 feet (15 m) चट्टान की जिसने सभी ब्रह्मांडीय किरणों को प्रभावी ढंग से समाप्त कर दिया, शून्य नरम त्रुटियां दर्ज की गईं।[6] इस परीक्षण में, कॉस्मिक किरणों के कारण होने वाली त्रुटि दर की तुलना में, सॉफ्ट एरर के अन्य सभी कारण मापने के लिए बहुत छोटे हैं।

ब्रह्मांडीय किरणों द्वारा उत्पादित ऊर्जावान न्यूट्रॉन अपनी अधिकांश गतिज ऊर्जा खो सकते हैं और अपने परिवेश के साथ थर्मल संतुलन तक पहुंच सकते हैं क्योंकि वे सामग्री द्वारा बिखरे हुए हैं। परिणामी न्यूट्रॉन को केवल थर्मल न्यूट्रॉन के रूप में जाना जाता है और 25 डिग्री सेल्सियस पर लगभग 25 मिलीइलेक्ट्रॉन-वोल्ट की औसत गतिज ऊर्जा होती है। थर्मल न्यूट्रॉन भी पर्यावरणीय विकिरण स्रोतों जैसे कि प्राकृतिक रूप से पाए जाने वाले यूरेनियम या थोरियम के क्षय से उत्पन्न होते हैं। कॉस्मिक-रे वर्षा के अलावा अन्य स्रोतों से थर्मल न्यूट्रॉन प्रवाह अभी भी भूमिगत स्थान में ध्यान देने योग्य हो सकता है और कुछ सर्किटों के लिए नरम त्रुटियों में महत्वपूर्ण योगदानकर्ता हो सकता है।

थर्मल न्यूट्रॉन

न्यूट्रॉन जो गतिज ऊर्जा खो चुके हैं जब तक वे अपने परिवेश के साथ थर्मल संतुलन में नहीं हैं, कुछ सर्किटों के लिए नरम त्रुटियों का एक महत्वपूर्ण कारण है। कम ऊर्जा पर कई न्यूट्रॉन कैप्चर प्रतिक्रियाएं अधिक संभावित हो जाती हैं और कुछ सामग्रियों के विखंडन के परिणामस्वरूप आवेशित सेकेंडरी विखंडन उपोत्पाद के रूप में बनते हैं। कुछ परिपथों के लिए के नाभिक द्वारा एक तापीय न्यूट्रॉन का कब्जा 10बोरॉन का बी समस्थानिक विशेष रूप से महत्वपूर्ण है। यह परमाणु प्रतिक्रिया अल्फा कण, लिथियम का एक कुशल उत्पादक है7ली नाभिक और गामा किरण। आवेशित कणों में से कोई भी (अल्फा या 7ली) एक महत्वपूर्ण सर्किट नोड के बहुत करीब, लगभग 5 माइक्रोमीटर में उत्पन्न होने पर एक सॉफ्ट एरर का कारण बन सकता है। कैप्चर क्रॉस सेक्शन के लिए 11B परिमाण के 6 ऑर्डर छोटे हैं और सॉफ्ट त्रुटियों में योगदान नहीं करते हैं।[7] बोरॉन का उपयोग बोरोफॉस्फोसिलिकेट ग्लास में किया गया है, जो एकीकृत परिपथों की इंटरकनेक्शन परतों में इन्सुलेटर है, विशेष रूप से सबसे कम में। बोरॉन को शामिल करने से कांच का पिघला हुआ तापमान कम हो जाता है जिससे बेहतर इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना और प्लानराइजेशन विशेषताएँ मिलती हैं। इस एप्लिकेशन में ग्लास को वजन के हिसाब से 4% से 5% की बोरॉन सामग्री के साथ तैयार किया जाता है। प्राकृतिक रूप से पाया जाने वाला बोरॉन 20% है 10B शेष के साथ 11बी आइसोटोप। सॉफ्ट एरर के उच्च स्तर के कारण होते हैं 10बी कुछ पुरानी एकीकृत सर्किट प्रक्रियाओं की इस महत्वपूर्ण निचली परत में। पी-टाइप डोपेंट के रूप में कम सांद्रता में इस्तेमाल किया जाने वाला बोरॉन -11, सॉफ्ट एरर में योगदान नहीं देता है। एकीकृत सर्किट निर्माताओं ने उस समय तक बोरेटेड डाइलेक्ट्रिक्स को समाप्त कर दिया जब तक कि व्यक्तिगत सर्किट घटकों का आकार 150 एनएम तक कम नहीं हो गया, मुख्य रूप से इस समस्या के कारण।

महत्वपूर्ण डिजाइनों में, बोरॉन की कमी‍—‌लगभग पूरी तरह से बोरॉन-11 से मिलकर बनता है{{mdashb}इस प्रभाव से बचने के लिए और इसलिए सॉफ्ट एरर रेट को कम करने के लिए } का उपयोग किया जाता है। बोरॉन-11 परमाणु ऊर्जा का उप-उत्पाद है।

चिकित्सा इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए यह नरम त्रुटि तंत्र अत्यंत महत्वपूर्ण हो सकता है। 10 MeV से ऊपर फोटॉन बीम ऊर्जा का उपयोग करके उच्च-ऊर्जा कैंसर विकिरण चिकित्सा के दौरान न्यूट्रॉन का उत्पादन किया जाता है। इन न्यूट्रॉनों को मॉडरेट किया जाता है क्योंकि वे उपचार कक्ष में उपकरण और दीवारों से बिखरे हुए होते हैं जिसके परिणामस्वरूप एक थर्मल न्यूट्रॉन प्रवाह होता है जो लगभग 40 × 10 होता है6 सामान्य पर्यावरणीय न्यूट्रॉन प्रवाह से अधिक है। यह उच्च तापीय न्यूट्रॉन प्रवाह आम तौर पर नरम त्रुटियों की एक बहुत ही उच्च दर और परिणामी सर्किट गड़बड़ी का परिणाम होगा।[8][9]


अन्य कारण

यादृच्छिक शोर या सिग्नल अखंडता की समस्याओं के कारण नरम त्रुटियां भी हो सकती हैं, जैसे आगमनात्मक या कैपेसिटिव क्रॉसस्टॉक। हालांकि, सामान्य तौर पर, ये स्रोत विकिरण प्रभाव की तुलना में समग्र नरम त्रुटि दर में एक छोटे से योगदान का प्रतिनिधित्व करते हैं।

कुछ परीक्षण यह निष्कर्ष निकालते हैं कि DRAM मेमोरी सेल्स के अलगाव को विशेष रूप से तैयार किए गए साइड इफेक्ट्स से आसन्न कोशिकाओं तक पहुँचाया जा सकता है। इस प्रकार, DRAM में संग्रहीत डेटा तक पहुँचने के कारण मेमोरी सेल अपने चार्ज को लीक कर देते हैं और आधुनिक मेमोरी में उच्च सेल घनत्व के परिणामस्वरूप, पास की मेमोरी पंक्तियों की सामग्री को बदल देते हैं, जो वास्तव में मूल मेमोरी एक्सेस में संबोधित नहीं किए गए थे।[10] इस प्रभाव को पंक्ति हथौड़ा के रूप में जाना जाता है, और इसका उपयोग कुछ विशेषाधिकार वृद्धि कंप्यूटर सुरक्षा शोषण (कंप्यूटर सुरक्षा) में भी किया गया है।[11][12]


नरम त्रुटियों के आसपास डिजाइनिंग

नरम त्रुटि शमन

एक डिज़ाइनर सही अर्धचालक, पैकेज और सब्सट्रेट सामग्री, और सही डिवाइस ज्यामिति का चयन करके विवेकपूर्ण डिवाइस डिज़ाइन द्वारा नरम त्रुटियों की दर को कम करने का प्रयास कर सकता है। अक्सर, हालांकि, यह डिवाइस के आकार और वोल्टेज को कम करने, ऑपरेटिंग गति बढ़ाने और बिजली अपव्यय को कम करने की आवश्यकता से सीमित है। JEDEC JESD-89 मानक का उपयोग करते हुए उद्योग में अपसेट करने के लिए उपकरणों की संवेदनशीलता का वर्णन किया गया है।

डिजिटल सर्किट में सॉफ्ट एरर रेट को कम करने के लिए इस्तेमाल की जाने वाली एक तकनीक को विकिरण सख्त कहा जाता है। इसमें वृद्धि शामिल है इसके प्रभावी क्यू को बढ़ाने के लिए चयनित सर्किट नोड्स पर समाईcrit कीमत। यह कण ऊर्जा की सीमा को कम करता है जिससे नोड का तर्क मूल्य परेशान हो सकता है। साझा करने वाले ट्रांजिस्टर के आकार को बढ़ाकर अक्सर विकिरण सख्त किया जाता है नोड पर एक नाली/स्रोत क्षेत्र। चूंकि रेडिएशन हार्डनिंग का क्षेत्र और पावर ओवरहेड डिजाइन के लिए प्रतिबंधात्मक हो सकता है, इसलिए तकनीक को अक्सर चुनिंदा रूप से नोड्स पर लागू किया जाता है, जिसके बारे में भविष्यवाणी की जाती है कि अगर हिट हो जाए तो सॉफ्ट एरर होने की संभावना सबसे अधिक होती है। उपकरण और मॉडल जो कर सकते हैं भविष्यवाणी करें कि कौन से नोड सबसे कमजोर हैं, सॉफ्ट एरर के क्षेत्र में पिछले और वर्तमान शोध का विषय हैं।

नरम त्रुटियों का पता लगाना

हार्डवेयर और सॉफ्टवेयर दोनों तकनीकों का उपयोग करके प्रोसेसर और मेमोरी संसाधनों में सॉफ्ट एरर को संबोधित करने का काम किया गया है। कई शोध प्रयासों ने हार्डवेयर-आधारित निरर्थक बहु-थ्रेडिंग के माध्यम से त्रुटि का पता लगाने और पुनर्प्राप्ति का प्रस्ताव करके नरम त्रुटियों को संबोधित किया।[13][14][15] इन दृष्टिकोणों ने आउटपुट में त्रुटियों की पहचान करने के लिए एप्लिकेशन निष्पादन को दोहराने के लिए विशेष हार्डवेयर का उपयोग किया, जिससे हार्डवेयर डिज़ाइन जटिलता और उच्च प्रदर्शन ओवरहेड सहित लागत में वृद्धि हुई। दूसरी ओर, सॉफ्टवेयर आधारित सॉफ्ट एरर टॉलरेंट स्कीमें लचीली होती हैं और वाणिज्यिक ऑफ-द-शेल्फ माइक्रोप्रोसेसरों पर लागू की जा सकती हैं। कई कार्य कंपाइलर-स्तरीय निर्देश प्रतिकृति और सॉफ्ट एरर डिटेक्शन के लिए परिणाम जाँच का प्रस्ताव करते हैं। [16][17] [18]


नरम त्रुटियों को ठीक करना

डिजाइनर यह स्वीकार करना चुन सकते हैं कि नरम त्रुटियां होंगी, और उचित त्रुटि का पता लगाने और सुधार के साथ डिजाइन सिस्टम को शानदार तरीके से ठीक करने के लिए। आमतौर पर, एक सेमीकंडक्टर मेमोरी डिज़ाइन त्रुटि सुधार कोड बनाने के लिए प्रत्येक वर्ड (कंप्यूटर आर्किटेक्चर) में अनावश्यक डेटा को शामिल करते हुए आगे त्रुटि सुधार का उपयोग कर सकता है। वैकल्पिक रूप से, रोल-बैक त्रुटि सुधार का उपयोग किया जा सकता है, त्रुटि का पता लगाना और सुधार के साथ सॉफ्ट एरर का पता लगाना। एरर-डिटेक्टिंग कोड जैसे समता द्वियक , और दूसरे स्रोत से सही डेटा को फिर से लिखना। इस तकनीक का उपयोग अक्सर इससे लिखो कैश मैमोरी के लिए किया जाता है।

तर्क सर्किट में सॉफ्ट एरर को कभी-कभी पता लगाया जाता है और दोष सहिष्णुता की तकनीकों का उपयोग करके ठीक किया जाता है। इनमें अक्सर निरर्थक सर्किटरी या डेटा की गणना शामिल होती है, और आमतौर पर सर्किट क्षेत्र, घटे हुए प्रदर्शन और/या उच्च बिजली की खपत की कीमत पर आते हैं। लॉजिक सर्किट में बहुत उच्च सॉफ्ट-एरर विश्वसनीयता सुनिश्चित करने के लिए ट्रिपल मॉड्यूलर अतिरेक (टीएमआर) की अवधारणा को नियोजित किया जा सकता है। इस तकनीक में, समानांतर और आउटपुट में एक ही डेटा पर एक सर्किट की तीन समान प्रतियां बहुसंख्यक वोटिंग लॉजिक में फीड की जाती हैं, जो कम से कम दो तीन मामलों में हुई वैल्यू को लौटाती हैं। इस तरह, सॉफ्ट एरर के कारण एक सर्किट की विफलता को यह मानते हुए खारिज कर दिया जाता है कि अन्य दो सर्किट सही ढंग से संचालित हैं। व्यवहार में, हालांकि, कुछ डिजाइनर 200% से अधिक सर्किट क्षेत्र और पावर ओवरहेड की आवश्यकता को वहन कर सकते हैं, इसलिए यह आमतौर पर केवल चुनिंदा रूप से लागू होता है। लॉजिक सर्किट में सॉफ्ट त्रुटियों को ठीक करने के लिए एक अन्य सामान्य अवधारणा अस्थायी (या समय) अतिरेक है, जिसमें एक सर्किट एक ही डेटा पर कई बार काम करता है और स्थिरता के लिए बाद के मूल्यांकन की तुलना करता है। हालांकि, इस दृष्टिकोण में अक्सर प्रदर्शन ओवरहेड, क्षेत्र ओवरहेड (यदि लैच की प्रतियां डेटा स्टोर करने के लिए उपयोग की जाती हैं), और पावर ओवरहेड होता है, हालांकि मॉड्यूलर रिडंडेंसी की तुलना में काफी अधिक क्षेत्र-कुशल है।

परंपरागत रूप से, डायनेमिक रैंडम एक्सेस मेमोरी में सॉफ्ट एरर को कम करने या उसके आसपास काम करने की खोज में सबसे अधिक ध्यान दिया गया है, इस तथ्य के कारण कि DRAM में डेस्कटॉप और सर्वर कंप्यूटर सिस्टम में अतिसंवेदनशील डिवाइस सतह क्षेत्र का अधिकांश हिस्सा शामिल है (संदर्भ। सर्वर कंप्यूटरों में ECC RAM का प्रचलन)। डीआरएएम की संवेदनशीलता के लिए कठिन आंकड़े मुश्किल से आते हैं, और डिजाइन, निर्माण प्रक्रियाओं और निर्माताओं में काफी भिन्न होते हैं। 1980 के दशक की तकनीक 256 किलोबाइट DRAMS में एक अल्फा कण से पांच या छह बिट फ्लिप के समूह हो सकते थे। आधुनिक DRAMs में बहुत छोटे आकार के फीचर होते हैं, इसलिए समान मात्रा में आवेश के जमाव से आसानी से कई और बिट्स फ्लिप हो सकते हैं।

त्रुटि का पता लगाने और सुधार सर्किट के डिजाइन को इस तथ्य से मदद मिलती है कि नरम त्रुटियां आमतौर पर चिप के बहुत छोटे क्षेत्र में स्थानीयकृत होती हैं। आम तौर पर, स्मृति की केवल एक कोशिका प्रभावित होती है, हालांकि उच्च ऊर्जा की घटनाएं बहु-कोशिका को परेशान कर सकती हैं। परंपरागत मेमोरी लेआउट आमतौर पर चिप पर आसन्न कई अलग-अलग सुधार शब्दों में से एक को रखता है। इसलिए, यहां तक ​​कि एक मल्टी-सेल अपसेट भी केवल कई अलग-अलग एकल ईवेंट अपसेट की ओर ले जाता है। एकल सुधार शब्द में मल्टी-बिट अपसेट के बजाय कई सुधार शब्दों में सिंगल-बिट अपसेट होता है। इसलिए, एक त्रुटि सुधार कोड को सभी संभावित नरम त्रुटियों से निपटने के लिए प्रत्येक सुधार शब्द में त्रुटि में केवल एक बिट से निपटने की आवश्यकता होती है। 'मल्टी-सेल' शब्द का उपयोग मेमोरी के कई सेल्स को प्रभावित करने वाले अपसेट्स के लिए किया जाता है, जो भी सुधार शब्द उन सेल में आते हैं। 'मल्टी-बिट' का उपयोग तब किया जाता है जब एक सुधार शब्द में कई बिट्स त्रुटि में होते हैं।

कॉम्बिनेशन लॉजिक में सॉफ्ट एरर = कॉम्बिनेशन लॉजिक में तीन प्राकृतिक मास्किंग प्रभाव जो निर्धारित करते हैं कि क्या विद्युत मास्किंग, तार्किक मास्किंग और टेम्पोरल (या टाइमिंग-विंडो) मास्किंग एक सिंगल इवेंट अपसेट (SEU) सॉफ्ट एरर बनने के लिए प्रचार करेंगे। एक एसईयू तार्किक रूप से नकाबपोश है यदि इसकी ऑफ-पाथ गेट के कारण प्रचार को आउटपुट लैच तक पहुंचने से रोक दिया गया है इनपुट उस गेट के आउटपुट के तार्किक संक्रमण को रोकते हैं। एक एसईयू है विद्युतीय रूप से नकाबपोश अगर संकेत के विद्युत गुणों द्वारा क्षीण हो जाता है गेट्स इसके प्रसार पथ पर ऐसे हैं कि परिणामी नाड़ी अपर्याप्त परिमाण की है मज़बूती से जकड़ा हुआ। गलत पल्स पहुंचने पर एक SEU अस्थायी रूप से नकाबपोश होता है एक आउटपुट लैच, लेकिन यह पर्याप्त रूप से पास नहीं होता है जब लैच को पकड़ने के लिए वास्तव में ट्रिगर किया जाता है।

यदि तीनों मास्किंग प्रभाव विफल हो जाते हैं, तो प्रचारित पल्स लैच हो जाता है और लॉजिक सर्किट का आउटपुट एक गलत मान होगा। सर्किट ऑपरेशन के संदर्भ में, इस गलत आउटपुट वैल्यू को सॉफ्ट एरर इवेंट माना जा सकता है। हालांकि, माइक्रोआर्किटेक्चरल स्तर के दृष्टिकोण से, प्रभावित परिणाम वर्तमान में निष्पादित प्रोग्राम के आउटपुट को नहीं बदल सकता है। उदाहरण के लिए, गलत डेटा को उपयोग से पहले अधिलेखित किया जा सकता है, बाद के तर्क संचालन में छिपाया जा सकता है, या कभी भी उपयोग नहीं किया जा सकता है। यदि गलत डेटा किसी प्रोग्राम के आउटपुट को प्रभावित नहीं करता है, तो इसे माइक्रोआर्किटेक्चरल मास्किंग का एक उदाहरण माना जाता है।

नरम त्रुटि दर

सॉफ्ट एरर रेट (SER) वह दर है जिस पर कोई डिवाइस या सिस्टम सॉफ्ट एरर का सामना करता है या उसका सामना करने की भविष्यवाणी की जाती है। यह आमतौर पर विफलताओं की संख्या-इन-टाइम (FIT) या विफलताओं (MTBF) के बीच औसत समय के रूप में व्यक्त किया जाता है। समय में विफलताओं की मात्रा निर्धारित करने के लिए अपनाई गई इकाई को FIT कहा जाता है, जो डिवाइस के संचालन के प्रति अरब घंटे में एक त्रुटि के बराबर है। MTBF आमतौर पर उपकरण संचालन के वर्षों में दिया जाता है; इसे परिप्रेक्ष्य में रखने के लिए, एक FIT लगभग 1,000,000,000 / (24 × 365.25) = एक साल के MTBF की तुलना में त्रुटियों के बीच 114,077 गुना लंबा होता है।

जबकि कई इलेक्ट्रॉनिक प्रणालियों में एक MTBF होता है जो सर्किट के अपेक्षित जीवनकाल से अधिक होता है, फिर भी SER निर्माता या ग्राहक के लिए अस्वीकार्य हो सकता है। उदाहरण के लिए, यदि सिस्टम में पर्याप्त सॉफ्ट एरर सुरक्षा नहीं है, तो सॉफ्ट एरर के कारण प्रति मिलियन सर्किट में कई विफलताओं की उम्मीद की जा सकती है। क्षेत्र में कुछ उत्पादों की विफलता, विशेष रूप से यदि विपत्तिपूर्ण हो, तो उस उत्पाद और कंपनी की प्रतिष्ठा को धूमिल कर सकती है जिसने इसे डिजाइन किया था। इसके अलावा, सुरक्षा- या लागत-महत्वपूर्ण अनुप्रयोगों में जहां सिस्टम की विफलता की लागत सिस्टम की लागत से कहीं अधिक है, ग्राहक के लिए स्वीकार्य होने के लिए प्रति जीवन सॉफ्ट त्रुटि विफलता का 1% जोखिम बहुत अधिक हो सकता है। इसलिए, उच्च मात्रा में सिस्टम का निर्माण करते समय या अत्यधिक उच्च विश्वसनीयता की आवश्यकता होने पर कम एसईआर के लिए डिजाइन करना फायदेमंद होता है।

यह भी देखें

संदर्भ

  1. Artem Dinaburg (July 2011). "बिटक्वाटिंग - बिना शोषण के डीएनएस हाइजैकिंग" (PDF). Archived from the original (PDF) on 2018-06-11. Retrieved 2011-12-26.
  2. Gold (1995): "This letter is to inform you and congratulate you on another remarkable scientific prediction of the future; namely your foreseeing of the dynamic random-access memory (DRAM) logic upset problem caused by alpha particle emission, first observed in 1977, but written about by you in Caves of Steel in 1957." [Note: Actually, 1952.] ... "These failures are caused by trace amounts of radioactive elements present in the packaging material used to encapsulate the silicon devices ... in your book, Caves of Steel, published in the 1950s, you use an alpha particle emitter to 'murder' one of the robots in the story, by destroying ('randomizing') its positronic brain. This is, of course, as good a way of describing a logic upset as any I've heard ... our millions of dollars of research, culminating in several international awards for the most important scientific contribution in the field of reliability of semiconductor devices in 1978 and 1979, was predicted in substantially accurate form twenty years [Note: twenty-five years, actually] before the events took place
  3. Ziegler, J. F. (January 1996). "Terrestrial cosmic rays". IBM Journal of Research and Development. 40 (1): 19–39. doi:10.1147/rd.401.0019. ISSN 0018-8646.
  4. 4.0 4.1 Simonite, Tom (March 2008). "Should every computer chip have a cosmic ray detector?". New Scientist. Archived from the original on 2011-12-02. Retrieved 2019-11-26.
  5. Gordon, M. S.; Goldhagen, P.; Rodbell, K. P.; Zabel, T. H.; Tang, H. H. K.; Clem, J. M.; Bailey, P. (2004). "जमीन पर कॉस्मिक-रे प्रेरित न्यूट्रॉन के प्रवाह और ऊर्जा स्पेक्ट्रम का मापन". IEEE Transactions on Nuclear Science. 51 (6): 3427–3434. Bibcode:2004ITNS...51.3427G. doi:10.1109/TNS.2004.839134. ISSN 0018-9499. S2CID 9573484.
  6. Dell, Timothy J. (1997). "पीसी सर्वर मेन मेमोरी के लिए चिपकिल-करेक्ट ईसीसी के लाभों पर एक श्वेत पत्र" (PDF). ece.umd.edu. p. 13. Retrieved 2021-11-03.{{cite web}}: CS1 maint: url-status (link)
  7. Baumann, R.; Hossain, T.; Murata, S.; Kitagawa, H. (1995). "Boron compounds as a dominant source of alpha particles in semiconductor devices". 33rd IEEE International Reliability Physics Symposium. pp. 297–302. doi:10.1109/RELPHY.1995.513695. ISBN 978-0-7803-2031-4. S2CID 110078856.
  8. Wilkinson, J. D.; Bounds, C.; Brown, T.; Gerbi, B. J.; Peltier, J. (2005). "इलेक्ट्रॉनिक उपकरणों में नरम त्रुटियों के कारण कैंसर-रेडियोथेरेपी उपकरण". IEEE Transactions on Device and Materials Reliability. 5 (3): 449–451. doi:10.1109/TDMR.2005.858342. ISSN 1530-4388. S2CID 20789261.
  9. Franco, L., Gómez, F., Iglesias, A., Pardo, J., Pazos, A., Pena, J., Zapata, M., SEUs on commercial SRAM induced by low energy neutrons produced at a clinical linac facility, RADECS Proceedings, September 2005
  10. Park, Kyungbae; Baeg, Sanghyeon; Wen, ShiJie; Wong, Richard (October 2014). "Active-precharge hammering on a row induced failure in DDR3 SDRAMs under 3× nm technology". Active-Precharge Hammering on a Row Induced Failure in DDR3 SDRAMs under 3x nm Technology. IEEE. pp. 82–85. doi:10.1109/IIRW.2014.7049516. ISBN 978-1-4799-7308-8. S2CID 14464953.
  11. Kim, Yoongu; Daly, Ross; Kim, Jeremie; Fallin, Chris; Lee, Ji Hye; Lee, Donghyuk; Wilkerson, Chris; Lai, Konrad; Mutlu, Onur (2014-06-24). "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" (PDF). ece.cmu.edu. IEEE. Retrieved 2015-03-10.
  12. Goodin, Dan (2015-03-10). "अत्याधुनिक हैक DRAM की कमजोरी का फायदा उठाकर सुपर यूजर का दर्जा देता है". Ars Technica. Retrieved 2015-03-10.
  13. Reinhardt, Steven K.; Mukherjee, Shubhendu S. (2000). "एक साथ मल्टीथ्रेडिंग के माध्यम से क्षणिक दोष का पता लगाना". ACM SIGARCH Computer Architecture News. 28 (2): 25–36. CiteSeerX 10.1.1.112.37. doi:10.1145/342001.339652. ISSN 0163-5964.
  14. Mukherjee, Shubhendu S.; Kontz, Michael; Reinhardt, Steven K. (2002). "अनावश्यक मल्टीथ्रेडिंग विकल्पों का विस्तृत डिजाइन और मूल्यांकन". ACM SIGARCH Computer Architecture News. 30 (2): 99. CiteSeerX 10.1.1.13.2922. doi:10.1145/545214.545227. ISSN 0163-5964. S2CID 1909214.
  15. Vijaykumar, T. N.; Pomeranz, Irith; Cheng, Karl (2002). "एक साथ मल्टीथ्रेडिंग का उपयोग करके क्षणिक-दोष वसूली". ACM SIGARCH Computer Architecture News. 30 (2): 87. doi:10.1145/545214.545226. ISSN 0163-5964. S2CID 2270600.
  16. Nahmsuk, Oh; Shirvani, Philip P.; McCluskey, Edward J. (2002). "सुपर-स्केलर प्रोसेसर में डुप्लिकेट निर्देशों द्वारा त्रुटि का पता लगाना". IEEE Transactions on Reliability. 51: 63–75. doi:10.1109/24.994913.
  17. Reis A., George A.; Chang, Jonathan; Vachharajani, Neil; Rangan, Ram; August, David I. (2005). "SWIFT: Software implemented fault tolerance". कोड जनरेशन और अनुकूलन पर अंतर्राष्ट्रीय संगोष्ठी. Proceedings of the international symposium on Code generation and optimization. pp. 243–254. CiteSeerX 10.1.1.472.4177. doi:10.1109/CGO.2005.34. ISBN 978-0-7695-2298-2. S2CID 5746979.{{cite book}}: CS1 maint: location missing publisher (link)
  18. Didehban, Moslem; Shrivastava, Aviral (2016), "NZDC", nZDC: A compiler technique for near Zero Silent Data Corruption, Proceedings of the 53rd Annual Design Automation Conference (DAC): ACM, p. 48, doi:10.1145/2897937.2898054, ISBN 9781450342360, S2CID 5618907{{citation}}: CS1 maint: location (link)


अग्रिम पठन


बाहरी संबंध