बीटा कण
[[File:Alfa beta gamma radiation.svg|300px|thumb| अल्फा कण में हीलियम नाभिक होता है और इसे कागज की शीट द्वारा आसानी से रोक दिया जाता है। [[ इलेक्ट्रॉनों ]], जिसमें इलेक्ट्रॉन या पॉज़िट्रॉन होते हैं, को पतली एल्यूमीनियम प्लेट द्वारा रोक दिया जाता है, किन्तु गामा किरण को सीसे या कंक्रीट जैसी सघन सामग्री द्वारा परिरक्षण की आवश्यकता होती है।Cite error: Closing </ref>
missing for <ref>
tag
0.5 MeV की ऊर्जा वाले बीटा कणों की हवा में लगभग मीटर की सीमा होती है; दूरी कण ऊर्जा पर निर्भर है।
बीटा कण के आयनीकरण विकिरण होते हैं और विकिरण सुरक्षा उद्देश्यों के लिए गामा किरणों की तुलना में अधिक आयनकारी माना जाता है, किन्तु अल्फा कणों की तुलना में अल्प आयनीकरण होता है। आयनकारी प्रभाव जितना अधिक होगा, जीवित ऊतक को उतनी ही अधिक हानि होगी, किन्तु विकिरण की भेदन शक्ति भी अल्प होगी।
बीटा क्षय मोड
β− क्षय (इलेक्ट्रॉन उत्सर्जन)
न्यूट्रॉन की अधिकता वाला अस्थिर परमाणु नाभिक β− क्षय से निकल सकता है, जहां न्यूट्रॉन प्रोटॉन, इलेक्ट्रॉन और इलेक्ट्रॉन एंटी न्युट्रीनो (न्यूट्रिनो का कण) में परिवर्तित हो जाता है:
n
→
p
+
e−
+
ν
e
यह प्रक्रिया दुर्बल अंतःक्रिया द्वारा मध्यस्थ होती है। न्यूट्रॉन आभासी W− बोसोन के उत्सर्जन के माध्यम से प्रोटॉन में परिवर्तित हो जाता है। क्वार्क स्तर पर, W− उत्सर्जन डाउन क्वार्क को अप क्वार्क में परिवर्तित कर देता है, न्यूट्रॉन (अप क्वार्क और दो डाउन क्वार्क) को प्रोटॉन (दो अप क्वार्क और डाउन क्वार्क) में परिवर्तित कर देता है। आभासी W− बोसोन तब इलेक्ट्रॉन और एंटीन्यूट्रिनो में क्षय हो जाता है।
β- क्षय सामान्यतः परमाणु रिएक्टरों में उत्पादित न्यूट्रॉन युक्त परमाणु विखंडन उत्पाद के मध्य होता है। इस प्रक्रिया से मुक्त न्यूट्रॉन भी क्षय हो जाते हैं। ये दोनों प्रक्रियाएं विखंडन-रिएक्टर ईंधन की छड़ों द्वारा उत्पादित बीटा किरणों और इलेक्ट्रॉन एंटीन्यूट्रिनोस की प्रचुर मात्रा में योगदान करती हैं।
β+ क्षय (पॉज़िट्रॉन उत्सर्जन)
प्रोटॉन की अधिकता वाले अस्थिर परमाणु नाभिक β+ क्षय से निकल सकते हैं, जिसे पॉज़िट्रॉन क्षय भी कहा जाता है, जहाँ प्रोटॉन न्यूट्रॉन, पॉज़िट्रॉन और इलेक्ट्रॉन न्यूट्रिनो में परिवर्तित हो जाता है:
p
→
n
+
e+
+
ν
e
बीटा-प्लस क्षय केवल नाभिक के अंदर हो सकता है जब संतति नाभिक की बाध्यकारी ऊर्जा का निरपेक्ष मान मूल नाभिक की तुलना में अधिक होता है, अर्थात संतति नाभिक निम्न-ऊर्जा अवस्था है।
बीटा क्षय योजनाएं
संलग्न क्षय योजना आरेख सीज़ियम-137 के बीटा क्षय को दर्शाता है। 137Cs को 661 KeV पर विशिष्ट गामा शिखर के लिए जाना जाता है, किन्तु यह वास्तव में डॉटर रेडियोन्यूक्लाइड 137mBa द्वारा उत्सर्जित होता है। आरेख उत्सर्जित विकिरण के प्रकार और ऊर्जा, इसकी सापेक्ष बहुतायत और क्षय के पश्चात डॉटर न्यूक्लाइड को दर्शाता है।
फास्फोरस - 32 बीटा उत्सर्जक है जिसका व्यापक रूप से चिकित्सा में उपयोग किया जाता है और इसका आधा जीवन 14.29 दिनों का होता है,[1] और इस परमाणु समीकरण में दिखाए गए अनुसार बीटा क्षय द्वारा सल्फर -32 में क्षय होता है:
क्षय के समय 1.709 MeV ऊर्जा मुक्त होती है।[1]इलेक्ट्रॉन की गतिज ऊर्जा लगभग 0.5 MeV के औसत के साथ पर्रिवर्तित होती है और शेष ऊर्जा लगभग अनभिज्ञेय इलेक्ट्रॉन एंटीन्यूट्रिनो द्वारा वहन की जाती है। अन्य बीटा विकिरण उत्सर्जक न्यूक्लाइड्स की तुलना में, इलेक्ट्रॉन मध्यम ऊर्जावान है। यह लगभग 1 मीटर हवा या 5 मिमी ऐक्रेलिक ग्लास द्वारा अवरुद्ध है।
अन्य स्थिति के साथ सहभागिता
रेडियोधर्मी सामग्री, अल्फा कण, बीटा और गामा किरण द्वारा दिए गए तीन सामान्य प्रकार के विकिरणों में, बीटा में मध्यम मर्मज्ञ शक्ति और मध्यम आयनीकरण शक्ति होती है। यद्यपि विभिन्न रेडियोधर्मी पदार्थों द्वारा छोड़े गए बीटा कण ऊर्जा में भिन्न होते हैं, अधिकांश बीटा कणों को कुछ मिलीमीटर अल्युमीनियम द्वारा रोका जा सकता है। चूँकि, इसका तात्पर्य यह नहीं है कि बीटा-उत्सर्जक समस्थानिकों को इस प्रकार की पतली ढालों द्वारा प्रत्येक प्रकार से परिरक्षित किया जा सकता है: चूंकि वे पदार्थ में अल्प हो जाते हैं, बीटा इलेक्ट्रॉन माध्यमिक गामा किरणों का उत्सर्जन करते हैं, जो बीटा प्रति से अधिक मर्मज्ञ होते हैं। अल्प परमाणु भार वाली सामग्रियों से बना परिरक्षण अल्प ऊर्जा के साथ गामा उत्पन्न करता है, जिससे उच्च-जेड सामग्री जैसे सीसा से बने ढालों की तुलना में प्रति इकाई द्रव्यमान कुछ अधिक प्रभावी होता है।
आवेशित कणों से बना होने के कारण, गामा विकिरण की तुलना में बीटा विकिरण अधिक प्रबल रूप से आयनकारी होता है। पदार्थ से निकलते समय, बीटा कण विद्युतचुंबकीय अंतःक्रियाओं द्वारा धीमा हो जाता है और ब्रेकिंग विकिरण एक्स-रे दे सकता है।
पानी में, कई परमाणु विखंडन उत्पादों से बीटा विकिरण सामान्यतः उस सामग्री में प्रकाश की गति से अधिक होता है (जो निर्वात में प्रकाश का 75% है),[2] और इस प्रकार पानी के माध्यम से निकलने पर नीला चेरेंकोव विकिरण उत्पन्न करता है। स्विमिंग पूल रिएक्टरों की ईंधन छड़ों से तीव्र बीटा विकिरण को पारदर्शी पानी के माध्यम से देखा जा सकता है जो रिएक्टर को कवर और ढाल देता है (दाईं ओर चित्रण देखें)।
परीक्षण और माप
पदार्थ पर बीटा कणों के आयनीकरण या उत्तेजना प्रभाव मूलभूत प्रक्रियाएं हैं जिनके द्वारा रेडियोमेट्रिक पहचान यंत्र बीटा विकिरण को ज्ञात करते हैं और मापते हैं। गैस के आयनीकरण का उपयोग आयन कक्षों और गीजर-मुलर काउंटरों में किया जाता है, और स्किंटिलेटर्स के उत्तेजना का उपयोग स्किंटिलेशन काउंटरों में किया जाता है।
निम्न तालिका एसआई और गैर-एसआई इकाइयों में विकिरण मात्रा दर्शाती है:
Quantity | Unit | Symbol | Derivation | Year | SI equivalent |
---|---|---|---|---|---|
Activity (A) | becquerel | Bq | s−1 | 1974 | SI unit |
curie | Ci | 3.7 × 1010 s−1 | 1953 | 3.7×1010 Bq | |
rutherford | Rd | 106 s−1 | 1946 | 1,000,000 Bq | |
Exposure (X) | coulomb per kilogram | C/kg | C⋅kg−1 of air | 1974 | SI unit |
röntgen | R | esu / 0.001293 g of air | 1928 | 2.58 × 10−4 C/kg | |
Absorbed dose (D) | gray | Gy | J⋅kg−1 | 1974 | SI unit |
erg per gram | erg/g | erg⋅g−1 | 1950 | 1.0 × 10−4 Gy | |
rad | rad | 100 erg⋅g−1 | 1953 | 0.010 Gy | |
Equivalent dose (H) | sievert | Sv | J⋅kg−1 × WR | 1977 | SI unit |
röntgen equivalent man | rem | 100 erg⋅g−1 × WR | 1971 | 0.010 Sv | |
Effective dose (E) | sievert | Sv | J⋅kg−1 × WR × WT | 1977 | SI unit |
röntgen equivalent man | rem | 100 erg⋅g−1 × WR × WT | 1971 | 0.010 Sv |
- ग्रे (Gy), अवशोषित मात्रा की एसआई इकाई है, जो कि विकिरणित सामग्री में जमा विकिरण ऊर्जा की मात्रा है। बीटा विकिरण के लिए यह संख्यात्मक रूप से सीवर्ट द्वारा मापी गई समतुल्य मात्रा के समान है, जो मानव ऊतक पर विकिरण के निम्न स्तर के स्टोकेस्टिक जैविक प्रभाव को प्रदर्शित करता है। अवशोषित मात्रा से समकक्ष मात्रा तक विकिरण भार रूपांतरण कारक बीटा के लिए 1 है, जबकि अल्फा कणों में 20 का कारक होता है, जो ऊतक पर उनके अधिक आयनकारी प्रभाव को दर्शाता है।
- रेड (यूनिट) अवशोषित मात्रा के लिए पदावनत सीजीएस इकाई है और रॉन्टगन समकक्ष मैन समतुल्य मात्रा की पदावनत सीजीएस इकाई है, जिसका उपयोग मुख्य रूप से यूएसए में किया जाता है।
अनुप्रयोग
बीटा कणों का उपयोग आंख और हड्डी के कैंसर जैसी स्वास्थ्य स्थितियों के उपचार के लिए किया जा सकता है और इसका उपयोग ट्रेसर के रूप में भी किया जाता है। स्ट्रोंटियम-90 बीटा कणों के उत्पादन के लिए सबसे अधिक उपयोग की जाने वाली सामग्री है।
रोलर्स की प्रणाली के माध्यम से आने वाले कागज़ जैसे किसी वस्तु की मोटाई का परीक्षण करने के लिए गुणवत्ता नियंत्रण में बीटा कणों का भी उपयोग किया जाता है। उत्पाद से निर्वाहित होते समय कुछ बीटा विकिरण अवशोषित हो जाते हैं। यदि उत्पाद अधिक मोटा या पतला बनाया जाता है, तो विकिरण की भिन्न मात्रा अवशोषित हो जाएगी। निर्मित कागज की गुणवत्ता का निरीक्षण करने वाला कंप्यूटर प्रोग्राम फिर अंतिम उत्पाद की मोटाई पर्रिवर्तित करने के लिए रोलर्स को स्थानांतरित करेगा।
रोशनी उपकरण जिसे बीटा प्रकाश कहा जाता है, उसमें ट्रिटियम और फॉस्फर होता है। ट्रिटियम रेडियोधर्मी क्षय के रूप में, यह बीटा कणों का उत्सर्जन करता है; ये फॉस्फोर पर प्रहार करते हैं, जिससे फॉस्फोर फोटोन को त्यागता है, अधिक सीमा तक टेलीविजन में कैथोड रे ट्यूब के जैसे होता है। रोशनी के लिए किसी बाहरी शक्ति की आवश्यकता नहीं होती है, और जब तक ट्रिटियम उपस्थित रहता है तब तक निरंतर रहेगा (और फॉस्फोर स्वयं रासायनिक रूप से परिवर्तित नहीं होते हैं); दीप्तिमान प्रवाह 12.32 वर्षों में अपने मूल मूल्य को अर्ध कर देगा, ट्रिटियम का अर्ध जीवन होता है।
रेडियोधर्मी अनुरेखक आइसोटोप का बीटा-प्लस (या पॉज़िट्रॉन) क्षय पोजीट्रान एमिशन टोमोग्राफी (पीईटी स्कैन) में उपयोग किए जाने वाले पॉज़िट्रॉन का स्रोत है।
इतिहास
हेनरी बेकरेल, प्रतिदीप्ति के साथ प्रयोग करते समय, त्रुटिपूर्ण रूप से ज्ञात हुआ कि यूरेनियम ने फोटो ग्राफिक प्लेट को उजागर किया, जो काले कागज से लिपटा हुआ था, कुछ अज्ञात विकिरण के साथ जिसे एक्स-रे के जैसे बंद नहीं किया जा सकता था।
अर्नेस्ट रदरफोर्ड ने इन प्रयोगों को निरंतर रखा और दो भिन्न-भिन्न प्रकार के विकिरणों का शोध किया:
- अल्फा कण जो बेक्यूरल प्लेट्स पर दिखाई नहीं देते थे क्योंकि वे ब्लैक रैपिंग पेपर द्वारा सरलता से अवशोषित हो जाते थे।
- बीटा कण जो अल्फा कणों से 100 गुना ज्यादा भेदने वाले होते हैं।
उन्होंने 1899 में अपने परिणाम प्रकाशित किए।[3]
1900 में, बेकरेल ने जे. जे. थॉमसन द्वारा कैथोड किरणों का अध्ययन करने और इलेक्ट्रॉन की पहचान करने के लिए उपयोग की जाने वाली विधि द्वारा बीटा कणों के द्रव्यमान-से-आवेश अनुपात (m/e) को मापा। उन्होंने पाया कि बीटा कण के लिए e/m थॉमसन के इलेक्ट्रॉन के समान है, और इसलिए परामर्श दिया कि बीटा कण वास्तव में इलेक्ट्रॉन है।
स्वास्थ्य
बीटा कण मध्यम रूप से जीवित ऊतक में प्रवेश कर रहे हैं, और डीएनए में सहज उत्परिवर्तन उत्पन्न कर सकते हैं।
कैंसर कोशिकाओं को मारने के लिए विकिरण चिकित्सा में बीटा स्रोतों का उपयोग किया जा सकता है।
यह भी देखें
- सामान्य बीटा उत्सर्जक
- इलेक्ट्रॉन विकिरण
- कण भौतिकी
- न्यूट्रॉन विकिरण |एन (न्यूट्रॉन) किरणें
- डेल्टा किरण|δ (डेल्टा) किरणें
संदर्भ
- ↑ 1.0 1.1 "फास्फोरस - 32" (PDF). nucleide.org. Labratoire Nationale Henri Bequerel. Archived (PDF) from the original on 2022-10-09. Retrieved 28 June 2022.
- ↑ The macroscopic speed of light in water is 75% of the speed of light in a vacuum (called "c"). The beta particle is moving faster than 0.75 c, but not faster than c.
- ↑ E. Rutherford (8 May 2009) [Paper published by Rutherford in 1899]. "यूरेनियम विकिरण और इसके द्वारा उत्पादित विद्युत चालन". Philosophical Magazine. 47 (284): 109–163. doi:10.1080/14786449908621245.
आगे की पढाई
- Radioactivity and alpha, beta, gamma and Xrays
- Rays and Particles University of Virginia Lecture
- History of Radiation at Idaho State University
- Basic Nuclear Science Information at the Lawrence Berkeley National Laboratory