उपज (रसायन विज्ञान)
रसायन विज्ञान में, उपज, जिसे प्रतिक्रिया उपज के रूप में भी जाना जाता है, एक रासायनिक प्रतिक्रिया में प्राप्त अभिकारक के संबंध में गठित उत्पाद (रसायन विज्ञान) के तिल (इकाई) की मात्रा का एक उपाय है, जिसे आमतौर पर प्रतिशत के रूप में व्यक्त किया जाता है। [1] उपज उन प्राथमिक कारकों में से एक है जिन पर वैज्ञानिकों को कार्बनिक संश्लेषण और अकार्बनिक रासायनिक संश्लेषण प्रक्रियाओं पर विचार करना चाहिए।[2] रासायनिक प्रतिक्रिया इंजीनियरिंग में, उपज, रूपांतरण (रसायन विज्ञान) और चयनात्मकता ऐसे शब्द हैं जिनका उपयोग अनुपातों का वर्णन करने के लिए किया जाता है कि कितना अभिकारक (रूपांतरण) का उपभोग किया गया था, अवांछित के संबंध में कितना वांछित उत्पाद (उपज) बनाया गया था उत्पाद (चयनात्मकता), X, Y और S के रूप में दर्शाया गया है।
परिभाषाएँ
रासायनिक प्रतिक्रिया इंजीनियरिंग में, उपज, रूपांतरण (रसायन विज्ञान) और चयनात्मकता ऐसे शब्द हैं जिनका उपयोग अनुपातों का वर्णन करने के लिए किया जाता है कि कितने अभिकारक ने प्रतिक्रिया की है - रूपांतरण, वांछित उत्पाद का कितना गठन किया गया था - उपज, और कितना वांछित उत्पाद अनुपात में बनाया गया था अवांछित उत्पाद के लिए - चयनात्मकता, एक्स, एस और वाई के रूप में प्रतिनिधित्व किया।
एलिमेंट्स ऑफ केमिकल रिएक्शन इंजीनियरिंग मैनुअल के अनुसार, यील्ड खपत किए गए रिएक्टेंट के प्रति मोल (यूनिट) के एक विशिष्ट उत्पाद की मात्रा को संदर्भित करता है।[3] रसायन शास्त्र में, रासायनिक प्रतिक्रियाओं में अभिकारकों और उत्पादों की मात्रा का वर्णन करने के लिए मोल का उपयोग किया जाता है।
रासायनिक शब्दावली के सार-संग्रह ने उपज को बड़े पैमाने पर रूपांतरण प्रक्रिया की दक्षता व्यक्त करने वाले अनुपात के रूप में परिभाषित किया है। उपज गुणांक को सेल द्रव्यमान (किलो) या उत्पाद (किग्रा, एमओएल) की मात्रा के रूप में परिभाषित किया गया है। रेफ समूह = नोट्स > किलोग्राम-तिल (किग्रा-मोल या जी-मोल) का उपयोग- 20वीं शताब्दी के अंत में 12 किलोग्राम 12सी में तत्वों की संख्या को किलोमोल (किलोमोल) के उपयोग से बदल दिया गया था। किलोमोल संख्यात्मक रूप से किलोग्राम-तिल के समान है। नाम और प्रतीक मीट्रिक इकाइयों के मानक गुणकों के लिए एसआई सम्मेलन को अपनाते हैं—kmol का अर्थ है 1000 mol। . रेफरी>McNaught, A. D.; Wilkinson, A., eds. (1997). जैव प्रौद्योगिकी में प्रयुक्त शब्दों के रसायनज्ञों के लिए शब्दावली. Compendium of Chemical Terminology the "Gold Book" (2 ed.). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook. ISBN 0-9678550-9-8. एस जे चाक। ऑनलाइन संस्करण (2019-)। अंतिम संशोधित फरवरी 24, 2014</ref>[4]: 168
1996 में वोगेल की प्रैक्टिकल ऑर्गेनिक केमिस्ट्री की पाठ्यपुस्तक (1978) के चौथे संस्करण में प्रतिक्रियाओं की निगरानी में पैदावार की गणना में, लेखक लिखते हैं कि, कार्बनिक प्रतिक्रिया में सैद्धांतिक उपज उत्पाद का वजन है जो प्रतिक्रिया प्राप्त होने पर प्राप्त होगा। रासायनिक समीकरण के अनुसार पूरा करने के लिए आगे बढ़ा है। उपज शुद्ध उत्पाद का वजन है जो प्रतिक्रिया से पृथक होता है।[1]: 33 [Notes 1] वोगेल की पाठ्यपुस्तक के 1996 के संस्करण में, प्रतिशत उपज के रूप में व्यक्त किया गया है,[1]: 33 [Notes 2]
वोगेल की पाठ्यपुस्तक के 1996 के संस्करण के अनुसार, 100% के करीब की पैदावार को मात्रात्मक कहा जाता है, 90% से ऊपर की पैदावार को उत्कृष्ट कहा जाता है, 80% से ऊपर की पैदावार बहुत अच्छी होती है, 70% से ऊपर की पैदावार अच्छी होती है, 50% से ऊपर की पैदावार उचित होती है, और पैदावार 40% से नीचे के लोग गरीब कहलाते हैं।[1]: 33 अपने 2002 के प्रकाशन में, पेत्रुकी, हारवुड और हेरिंग ने लिखा है कि वोगेल की पाठ्यपुस्तक के नाम मनमानी थे, और सार्वभौमिक रूप से स्वीकार नहीं किए गए थे, और प्रश्न में प्रतिक्रिया की प्रकृति के आधार पर, ये उम्मीदें अवास्तविक रूप से उच्च हो सकती हैं। उत्पाद के अशुद्ध होने पर उपज 100% या उससे अधिक दिखाई दे सकती है, क्योंकि उत्पाद के मापे गए वजन में किसी भी अशुद्धियों का वजन शामिल होगा।[5]: 125
अपने 2016 के प्रयोगशाला मैनुअल, प्रायोगिक कार्बनिक रसायन विज्ञान में, लेखकों ने प्रतिक्रिया उपज या रासायनिक प्रतिक्रिया की पूर्ण उपज को एक प्रतिक्रिया में प्राप्त शुद्ध और सूखे उत्पाद की मात्रा के रूप में वर्णित किया।[6] उन्होंने लिखा है कि एक रासायनिक प्रतिक्रिया के स्टोइकोमेट्री को जानना - अभिकारकों और उत्पादों में परमाणुओं की संख्या और प्रकार, एक संतुलित समीकरण में स्टोइकोमेट्रिक कारकों के माध्यम से विभिन्न तत्वों की तुलना करना संभव बनाता है।[6]इन मात्रात्मक संबंधों द्वारा प्राप्त अनुपात डेटा विश्लेषण में उपयोगी होते हैं।[6]
सैद्धांतिक, वास्तविक, और प्रतिशत उपज
प्रतिशत उपज वास्तविक उपज के बीच एक तुलना है - जो एक प्रयोगशाला सेटिंग में रासायनिक प्रतिक्रिया के इच्छित उत्पाद का वजन है - और सैद्धांतिक उपज - एक निर्दोष रासायनिक के रासायनिक समीकरण के आधार पर शुद्ध इच्छित पृथक उत्पाद का माप प्रतिक्रिया,[1]और के रूप में परिभाषित किया गया है,
रासायनिक प्रतिक्रिया में उत्पादों और अभिकारकों के बीच आदर्श संबंध रासायनिक प्रतिक्रिया समीकरण का उपयोग करके प्राप्त किया जा सकता है। Stoichiometry का उपयोग रासायनिक प्रतिक्रियाओं के बारे में गणना चलाने के लिए किया जाता है, उदाहरण के लिए, अभिकारकों और उत्पादों के बीच stoichiometric तिल अनुपात। रासायनिक प्रतिक्रिया का स्टोइकोमेट्री रासायनिक सूत्रों और समीकरणों पर आधारित होता है जो उपज सहित विभिन्न उत्पादों और अभिकारकों के मोल्स की संख्या के बीच मात्रात्मक संबंध प्रदान करता है।[7] स्टोइकीओमेट्रिक समीकरणों का उपयोग सीमित अभिकर्मक या अभिकारक को निर्धारित करने के लिए किया जाता है - अभिकारक जो प्रतिक्रिया में पूरी तरह से खपत होता है। सीमित अभिकर्मक सैद्धांतिक उपज निर्धारित करता है - अभिकारकों के मोल्स की सापेक्ष मात्रा और रासायनिक प्रतिक्रिया में गठित उत्पाद। कहा जाता है कि अन्य अभिकारक अधिक मात्रा में मौजूद हैं। वास्तविक उपज - प्रयोगशाला में आयोजित रासायनिक प्रतिक्रिया से भौतिक रूप से प्राप्त मात्रा - अक्सर सैद्धांतिक उपज से कम होती है।[7]सैद्धांतिक उपज वह है जो प्राप्त होगी यदि सभी सीमित अभिकर्मकों ने प्रश्न में उत्पाद देने के लिए प्रतिक्रिया व्यक्त की। एक अधिक सटीक उपज को इस आधार पर मापा जाता है कि वास्तव में कितना उत्पाद उत्पादित किया गया था बनाम कितना उत्पादन किया जा सकता था। सैद्धांतिक उपज और वास्तविक उपज का अनुपात प्रतिशत उपज में परिणाम देता है।[7]
जब एक से अधिक अभिकारक प्रतिक्रिया में भाग लेते हैं, तो उपज की गणना आमतौर पर सीमित अभिकारक की मात्रा के आधार पर की जाती है, जिसकी मात्रा अन्य सभी अभिकारकों की मात्रा के स्टोइकोमेट्री समतुल्य (या समतुल्य) से कम होती है। उपस्थित सभी सीमित अभिकर्मकों के साथ प्रतिक्रिया करने के लिए आवश्यकता से अधिक मात्रा में मौजूद अन्य अभिकर्मकों को अतिरिक्त माना जाता है। नतीजतन, उपज को प्रतिक्रिया दक्षता के उपाय के रूप में स्वचालित रूप से नहीं लिया जाना चाहिए।[citation needed]
उनके 1992 के प्रकाशन में जनरल केमिस्ट्री, व्हिटेन, गेली और डेविस ने सैद्धांतिक उपज को उपस्थित सभी अभिकारकों के मोल्स की संख्या के आधार पर एक स्टोइकोमेट्री गणना द्वारा अनुमानित राशि के रूप में वर्णित किया। यह गणना मानती है कि केवल एक प्रतिक्रिया होती है और यह कि सीमित अभिकारक पूरी तरह से प्रतिक्रिया करता है। [8]
व्हिटेन के अनुसार, वास्तविक उपज हमेशा कम होती है (प्रतिशत उपज 100% से कम होती है), अक्सर कई कारणों से बहुत अधिक होती है।[8]: 95 नतीजतन, कई प्रतिक्रियाएं अधूरी हैं और अभिकारक पूरी तरह से उत्पादों में परिवर्तित नहीं होते हैं। यदि एक विपरीत प्रतिक्रिया होती है, तो अंतिम अवस्था में रासायनिक संतुलन की स्थिति में अभिकारक और उत्पाद दोनों होते हैं। दो या दो से अधिक प्रतिक्रियाएं एक साथ हो सकती हैं, जिससे कुछ अभिकारक अवांछित साइड उत्पादों में परिवर्तित हो जाते हैं। प्रतिक्रिया मिश्रण से वांछित उत्पाद के पृथक्करण और शुद्धिकरण में नुकसान होता है। प्रारंभिक सामग्री में अशुद्धियाँ मौजूद होती हैं जो वांछित उत्पाद देने के लिए प्रतिक्रिया नहीं करती हैं।[8]
उदाहरण
यह एक एस्टरीफिकेशन प्रतिक्रिया का एक उदाहरण है जहां एक अणु एसीटिक अम्ल (जिसे एथेनोइक एसिड भी कहा जाता है) एक अणु इथेनॉल के साथ प्रतिक्रिया करता है, जिससे एक अणु एथिल एसीटेट (एक द्वि-आणविक क्रम (रसायन विज्ञान)) होता है। ):
- 120 ग्राम एसिटिक एसिड (60 g/mol, 2.0 mol) की 230 ग्राम इथेनॉल (46 g/mol, 5.0 mol) के साथ प्रतिक्रिया हुई, जिससे 132 g एथिल एसीटेट (88 g/mol, 1.5 mol) प्राप्त हुआ। उपज 75% थी।
- अभिकारकों की मोलर राशि की गणना वज़न (एसिटिक एसिड: 120 g ÷ 60 g/mol = 2.0 mol; इथेनॉल: 230 g ÷ 46 g/mol = 5.0 mol) से की जाती है।
- इथेनॉल का उपयोग 2.5 गुना अधिक (5.0 mol ÷ 2.0 mol) में किया जाता है।
- सैद्धांतिक मोलर यील्ड 2.0 mol (लिमिटिंग कंपाउंड, एसिटिक एसिड की मोलर मात्रा) है।
- उत्पाद की मोलर यील्ड की गणना उसके वजन (132 g ÷ 88 g/mol = 1.5 mol) से की जाती है।
- % यील्ड की गणना वास्तविक मोलर यील्ड और सैद्धांतिक मोलर यील्ड (1.5 mol ÷ 2.0 mol × 100% = 75%) से की जाती है।[citation needed]
उत्पादों की शुद्धि
अपनी 2016 की हैंडबुक ऑफ सिंथेटिक ऑर्गेनिक केमिस्ट्री में, माइकल पिरुंग ने लिखा है कि उपज उन प्राथमिक कारकों में से एक है, जिन्हें सिंथेटिक रसायनज्ञों को सिंथेटिक विधि या मल्टीस्टेप सिंथेसिस में एक विशेष परिवर्तन का मूल्यांकन करने पर विचार करना चाहिए।[9]: 163 उन्होंने लिखा है कि बरामद प्रारंभिक सामग्री (BRSM) या (BORSM) पर आधारित उपज सैद्धांतिक उपज या गणना की गई उत्पाद की मात्रा का 100% प्रदान नहीं करती है, जो मल्टीस्टेप सिथेसिस में अगला कदम उठाने के लिए आवश्यक है।: 163
शुद्धिकरण के कदम हमेशा उपज को कम करते हैं, प्रतिक्रिया वाहिकाओं और शुद्धिकरण तंत्र के बीच सामग्री के हस्तांतरण के दौरान होने वाले नुकसान या अशुद्धियों से उत्पाद के अपूर्ण पृथक्करण के कारण, जो अपर्याप्त रूप से शुद्ध समझे जाने वाले अंशों को छोड़ने की आवश्यकता हो सकती है। शुद्धि के बाद मापी गई उत्पाद की उपज (आमतौर पर >95% स्पेक्ट्रोस्कोपिक शुद्धता, या दहन विश्लेषण पास करने के लिए पर्याप्त शुद्धता) को प्रतिक्रिया की पृथक उपज कहा जाता है।[citation needed]
आंतरिक मानक उपज
गैस वर्णलेखन (जीसी), उच्च-प्रदर्शन तरल क्रोमैटोग्राफी, या परमाणु जैसी तकनीकों का उपयोग करके, एक अतिरिक्त आंतरिक मानक की ज्ञात मात्रा के सापेक्ष निर्मित उत्पाद की मात्रा (आमतौर पर कच्चे, अपरिष्कृत प्रतिक्रिया मिश्रण में) को मापकर पैदावार की गणना की जा सकती है। चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी (NMR स्पेक्ट्रोस्कोपी) या चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी (MRS)।[citation needed] इस दृष्टिकोण का उपयोग करके निर्धारित उपज को आंतरिक मानक उपज के रूप में जाना जाता है। संभावित अलगाव समस्याओं के बावजूद, प्रतिक्रिया द्वारा उत्पादित उत्पाद की मात्रा को सटीक रूप से निर्धारित करने के लिए पैदावार आमतौर पर इस तरह से प्राप्त की जाती है। इसके अतिरिक्त, वे उपयोगी हो सकते हैं जब उत्पाद का अलगाव चुनौतीपूर्ण या थकाऊ होता है, या जब अनुमानित उपज का तेजी से निर्धारण वांछित होता है। जब तक अन्यथा इंगित नहीं किया जाता है, सिंथेटिक कार्बनिक और अकार्बनिक रसायन शास्त्र साहित्य में रिपोर्ट की गई उपज अलग-अलग उपज का संदर्भ देती है, जो प्रयोगात्मक प्रक्रिया को दोहराने पर रिपोर्ट की गई शर्तों के तहत प्राप्त होने वाली शुद्ध उत्पाद की मात्रा को बेहतर ढंग से दर्शाती है।[citation needed]
उपज की रिपोर्टिंग
अपने 2010 के सिंलेट लेख में, मार्टिना वर्नरोवा और जैविक रसायनज्ञ, टॉमस हडलिकी ने पैदावार की गलत रिपोर्टिंग के बारे में चिंता जताई और समाधानों की पेशकश की- जिसमें यौगिकों के उचित लक्षण वर्णन शामिल थे।[10] सावधानीपूर्वक नियंत्रण प्रयोग करने के बाद, वर्नरोवा और हडलिकी ने कहा कि प्रत्येक भौतिक हेरफेर (निष्कर्षण/धुलाई, जलशुष्कक पर सुखाने, निस्पंदन और स्तंभ क्रोमैटोग्राफी सहित) के परिणामस्वरूप लगभग 2% की उपज का नुकसान होता है। इस प्रकार, मानक जलीय वर्कअप और क्रोमैटोग्राफिक शुद्धिकरण के बाद मापी गई पृथक पैदावार शायद ही कभी 94% से अधिक होनी चाहिए।[10]उन्होंने इस घटना को उपज मुद्रास्फीति कहा और कहा कि हाल के दशकों में रसायन विज्ञान साहित्य में उपज मुद्रास्फीति धीरे-धीरे ऊपर की ओर बढ़ गई थी। उन्होंने उपज मुद्रास्फीति को छोटे पैमाने पर आयोजित प्रतिक्रियाओं, इच्छाधारी सोच और प्रकाशन उद्देश्यों के लिए उच्च संख्या की रिपोर्ट करने की इच्छा पर उपज के लापरवाह माप के लिए जिम्मेदार ठहराया।[10]Hudlický का 2020 का लेख Angewandte Chemie में प्रकाशित हुआ है - जब से वापस ले लिया गया है - डाइटर सीबैक की 1990 की जैविक संश्लेषण की तीस-वर्षीय समीक्षा को सम्मानित और प्रतिध्वनित किया गया, जिसे Angewandte Chemie में भी प्रकाशित किया गया था।[11] अपनी 2020 एंगवेन्डे केमी 30-वर्षीय समीक्षा में, हडलिकी ने कहा कि उन्होंने और वर्नरोवा ने अपने 2010 के सिन्लेट लेख में जो सुझाव दिए थे, उन्हें जैविक पत्रिकाओं के संपादकीय बोर्डों और अधिकांश रेफरी द्वारा अनदेखा किया गया था।[12]
यह भी देखें
- रूपांतरण (रसायन विज्ञान)
- आंशिक प्राप्ति
टिप्पणियाँ
अग्रिम पठन
- Whitten, Kenneth W.; Davis, Raymond E; Peck, M. Larry (2002). General chemistry. Fort Worth: Thomson Learning. ISBN 978-0-03-021017-4.
- Whitten, Kenneth W; Gailey, Kenneth D (1981). General chemistry. Philadelphia: Saunders College Pub. ISBN 978-0-03-057866-3.
- Petrucci, Ralph H.; Herring, F. Geoffrey; Madura, Jeffry; Bissonnette, Carey; Pearson (2017). General chemistry: principles and modern applications. Toronto: Pearson. ISBN 978-0-13-293128-1.
- Vogel, Arthur Israel; Furniss, B. S; Tatchell, Austin Robert (1978). Vogel's Textbook of practical organic chemistry. New York: Longman. ISBN 978-0-582-44250-4.
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 Vogel, Arthur Irving (1996). Tatchell, Austin Robert; Furnis, B.S.; Hannaford, A.J.; Smith, P.W.G. (eds.). व्यावहारिक कार्बनिक रसायन शास्त्र की वोगेल की पाठ्यपुस्तक (PDF) (5 ed.). Prentice Hall. ISBN 978-0-582-46236-6. Retrieved June 25, 2020.
- ↑ {{Cite journal|last=Cornforth|first=JW|date=February 1, 1993|title=संश्लेषण के साथ परेशानी|journal=Australian Journal of Chemistry|volume=46|issue=2|pages=157–170|doi=10.1071/ch9930157|doi-access=free}
- ↑ {{Cite book| title = केमिकल रिएक्शन इंजीनियरिंग के तत्व|edition=4 |last=Fogler |first=H. Scott |pages=1120 |publisher=Prentice Hall |date=August 23, 2005}
- ↑ PAC, 1992, 64, 143. (Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992)) Compendium of Chemical Terminology
- ↑ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). सामान्य रसायन विज्ञान: सिद्धांत और आधुनिक अनुप्रयोग (8th ed.). Upper Saddle River, N.J: Prentice Hall. p. 125. ISBN 978-0-13-014329-7. LCCN 2001032331. OCLC 46872308.
- ↑ 6.0 6.1 6.2 {{Cite book| title = प्रायोगिक कार्बनिक रसायन| first1=Joaquín |last1=Isac-García |first2=José A. |last2=Dobado |first3=Francisco G. |last3=Calvo-Flores |first4=Henar |last4=Martínez-Garcí |edition=1| access-date = June 25, 2020| url = https://www.elsevier.com/books/experimental-organic-chemistry/isac-garcia/978-0-12-803893-2 |isbn=9780128038932 |publisher=Academic Press |date=2016 |pages=500}
- ↑ 7.0 7.1 7.2 {{cite book |last1 = Petrucci |first1 = Ralph H. |last2 = Harwood |first2 = William S. |last3 = Herring |first3 = F. Geoffrey |first4=Jeffry D. |last4=Madura |title=सामान्य रसायन शास्त्र|edition=9 |location=New Jersey |publisher=Pearson Prentice Hall |date=2007}
- ↑ 8.0 8.1 8.2 Whitten, Kenneth W.; Gailey, K.D.; Davis, Raymond E. (1992). सामान्य रसायन शास्त्र (4 ed.). Saunders College Publishing. ISBN 978-0-03-072373-5.
- ↑ Pirrung, Michael C. (August 30, 2016). हैंडबुक ऑफ सिंथेटिक ऑर्गेनिक केमिस्ट्री. Academic Press. ISBN 978-0-12-809504-1.
- ↑ 10.0 10.1 10.2 {{Cite journal|last1=Wernerova|first1=Martina|last2=Hudlicky|first2=Tomas|date=November 2010|title=पृथक उत्पाद पैदावार और स्टीरियोइसोमर्स के अनुपात के निर्धारण की व्यावहारिक सीमाओं पर: प्रतिबिंब, विश्लेषण और मोचन|journal=Synlett|language=en|volume=2010|issue=18|pages=2701–2707|doi=10.1055/s-0030-1259018|issn=1437-2096}
- ↑ {{Cite journal| doi = 10.1002/anie.199013201| issn = 1521-3773| volume = 29| issue = 11| pages = 1320–1367| last = Seebach| first = Dieter| title = जैविक संश्लेषण—अब कहाँ?| journal = Angewandte Chemie| date = 1990}
- ↑ Hudlicky, Tomas (June 4, 2020). ""जैविक संश्लेषण-अब कहाँ?" तीस साल का है। वर्तमान स्थिति पर एक चिंतन". Angewandte Chemie. Opinion. 59 (31): 12576. doi:10.1002/anie.202006717. PMID 32497328. वापस ले लिया गया।
Cite error: <ref>
tags exist for a group named "Notes", but no corresponding <references group="Notes"/>
tag was found