शेल पुनर्सामान्यीकरण योजना

From Vigyanwiki
Revision as of 11:45, 24 April 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

क्वांटम क्षेत्र सिद्धांत में, और विशेष रूप से क्वांटम विद्युतगतिकी में, अंतःक्रियात्मक सिद्धांत अनंत मात्राओं की ओर ले जाती है, जिन्हें मापने योग्य मात्राओं की भविष्यवाणी करने में सक्षम होने के लिए पुनर्सामान्यीकरण प्रक्रिया में अवशोषित किया जाना है। पुनर्सामान्यीकरण योजना उस प्रकार के कणों पर निर्भर कर सकती है जिन पर विचार किया जा रहा है। कणों के लिए जो असीमित रूप से बड़ी दूरी तय कर सकते हैं, या कम ऊर्जा प्रक्रियाओं के लिए, ऑन-शेल स्कीम, जिसे भौतिक योजना भी कहा जाता है, उचित है। यदि ये शर्तें पूरी नहीं होती हैं, तो अन्य योजनाओं की ओर रुख किया जा सकता है, जैसे न्यूनतम घटाव योजना (एमएस योजना) हैं।

अंतःक्रियात्मक सिद्धांत में फर्मियन प्रचारक

विभिन्न प्रचारकों (प्रोपगैटोर) को जानना फेनमैन आरेखों की गणना करने में सक्षम होने का आधार है जो भविष्यवाणी के लिए उपयोगी उपकरण हैं, उदाहरण के लिए, बिखरने वाले प्रयोगों का परिणाम। सिद्धांत में जहां एकमात्र क्षेत्र डायराक क्षेत्र है, फेनमैन प्रचार करता है।

जहां टाइम-ऑर्डरिंग ऑपरेटर है, | 0 ⟩ गैर-अंतःक्रियात्मक सिद्धांत में वैक्यूम, और डायराक क्षेत्र और इसका डायराक संलग्न है, और जहां समीकरण के बाईं ओर डिराक क्षेत्र का दो-बिंदु सहसंबंध फलन है।

नए सिद्धांत में, डिराक क्षेत्र दूसरे क्षेत्र के साथ बातचीत कर सकता है, उदाहरण के लिए क्वांटम इलेक्ट्रोडायनामिक्स में विद्युत चुम्बकीय क्षेत्र के साथ, और बातचीत की ताकत को पैरामीटर द्वारा मापा जाता है, क्यूईडी के मामले में यह अरक्षित इलेक्ट्रॉन चार्ज है, । प्रचारक का सामान्य रूप अपरिवर्तित रहना चाहिए, जिसका अर्थ है कि अब अंतःक्रियात्मक सिद्धांत में निर्वात का प्रतिनिधित्व करता है, दो-बिंदु सहसंबंध फलन अब पढ़ेगा।

दो नई मात्राएं पेश की गई हैं। सबसे पहले, पुनर्सामान्यीकृत द्रव्यमान को फेनमैन प्रचारक के फूरियर रूपांतरण में ध्रुव के रूप में परिभाषित किया गया है। यह ऑन-शेल रेनॉर्मलाइज़ेशन स्कीम का मुख्य नुस्खा है (तब न्यूनतम घटाव योजना की तरह अन्य बड़े पैमानों को पेश करने की कोई आवश्यकता नहीं है)। मात्रा डायराक क्षेत्र की नई शक्ति का प्रतिनिधित्व करता है। जैसा कि देकर बातचीत को शून्य से नीचे कर दिया गया है, इन नए मापदंडों को मूल्य के लिए प्रवृत्त होना चाहिए ताकि मुक्त फ़र्मियन के प्रसारक को पुनः प्राप्त किया जा सके, अर्थात् और

इस का मतलब है कि और में एक श्रृंखला के रूप में परिभाषित किया जा सकता है यदि यह पैरामीटर काफी छोटा है (यूनिट सिस्टम में जहां , , जहाँ उत्तम-संरचना स्थिर है)। इस प्रकार इन मापदंडों को व्यक्त किया जा सकता है।

दूसरी ओर, पदोन्नति में संशोधन की गणना एक निश्चित संख्या तक की जा सकती है फेनमैन का उपयोग करना। इन संशोधनों को फर्मियन आत्म ऊर्जा Σ(p) में व्यक्त किया गया है।

ये सुधार प्रायः भिन्न होते हैं क्योंकि इनमें वन-लूप फेनमैन आरेख होता है। सहसंबंध के दो भावों की पहचान करके निश्चित क्रम तक कार्य करता है , प्रतिपदार्थों को परिभाषित किया जा सकता है, और वे फ़र्मियन प्रचारक के सुधारों के भिन्न योगदानों को अवशोषित करने जा रहे हैं। इस प्रकार, पुनर्सामान्यीकृत मात्राएँ, जैसे सीमित रहेंगी, और प्रयोगों में मापी जाने वाली मात्राएँ होंगी।

फोटॉन प्रचारक

ठीक उसी तरह जैसे फर्मियन प्रोपेगेटर के साथ किया गया है, मुक्त फोटॉन क्षेत्र से प्रेरित फोटॉन प्रोपेगेटर के रूप की तुलना इंटरेक्टिंग सिद्धांत मे में निश्चित क्रम तक गणना किए गए फोटॉन प्रोपेगेटर से की जाएगी। फोटोन स्व-ऊर्जा और मीट्रिक टेन्सर (यहाँ +--- लेते हुए) नोट किया गया है।

प्रतिपद का व्यवहार आने वाले फोटॉन के संवेग से स्वतंत्र है। इसे ठीक करने के लिए, बड़ी दूरी पर क्यूईडी का व्यवहार (जो चिरसम्मत विद्युतगतिकी को पुनर्प्राप्त करने में मदद करता है), यानी जब का उपयोग किया जाता है:

इस प्रकार प्रतिपद के मान के साथ निश्चित है।

वर्टेक्स फ़ंक्शन

वर्टेक्स फ़ंक्शन का उपयोग करने वाले समान तर्क से विद्युत आवेश का पुनर्सामान्यीकरण होता है। यह पुनर्सामान्यीकरण और पुनर्सामान्यीकरण की शर्तों का निर्धारण बड़े अंतरिक्ष पैमानों पर शास्त्रीय इलेक्ट्रोडायनामिक्स से ज्ञात का उपयोग करके किया जाता है। यह प्रतिपद के मान की ओर जाता है, जो वास्तव में वार्ड-ताकाहाशी पहचान के कारण के बराबर है। यह वह गणना है जो फर्मीअन्स के विषम चुंबकीय द्विध्रुवीय क्षण के लिए उत्तरदायी है।

क्यूईडी लग्रांगियन का पुनर्विक्रय

हमने कुछ आनुपातिकता कारकों (जैसे ) पर विचार किया है जिन्हें प्रचारक के रूप से परिभाषित किया गया है। हालाँकि उन्हें क्यूईडी लैग्रैन्जियन से भी परिभाषित किया जा सकता है, जो इस खंड में किया जाएगा, और ये परिभाषाएँ समतुल्य हैं। लैग्रेंजियन जो क्वांटम इलेक्ट्रोडायनामिक्स के भौतिकी का वर्णन करता है

जहां विद्युत चुम्बकीय टेंस है, डायराक स्पिनर (वेवफंक्शन का आपेक्षिक समकक्ष) है, और इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल है। सिद्धांत के पैरामीटर , , और हैं। लूप सुधार (नीचे देखें) के कारण ये मात्राएँ अनंत होती हैं। कोई पुनर्सामान्यीकृत मात्रा को परिभाषित कर सकता है (जो सीमित और देखने योग्य होगा):

को प्रतिपदार्थ कहा जाता है (उनकी कुछ अन्य परिभाषाएँ संभव हैं)। उन्हें पैरामीटर में छोटा माना जाता है। लाग्रंगियन अब पुनर्सामान्यीकृत मात्रा के संदर्भ में पढ़ता है (प्रतिपदों में पहले क्रम में):

पुनर्सामान्यीकरण विधि नियमों का एक सेट है जो बताता है कि विचलन का कौन सा हिस्सा पुनर्सामान्यीकृत मात्रा में होना चाहिए और कौन से हिस्से प्रतिवाद में होने चाहिए। नुस्खा प्रायः मुक्त क्षेत्रों के सिद्धांत पर आधारित होता है, जो कि और के व्यवहार का होता है जब वे परस्पर क्रिया नहीं करते हैं (जो शब्द लैग्रैंगियन में हटाने के अनुरूप होता है)।

संदर्भ

  • M. Peskin; D. Schroeder (1995). An Introduction to Quantum Field Theory. Reading: Addison-Weasley.
  • M. Srednicki. Quantum Field Theory.
  • T. Gehrmann. Quantum Field Theory 1.