कोडिमेंशन
गणित में, कोडिमेंशन एक बुनियादी ज्यामितीय विचार है जो वेक्टर रिक्त स्थान में वेक्टर उप-स्थान पर लागू होता है, कई गुना में सबमेनिफोल्ड और बीजगणितीय किस्मों के उपयुक्त उपसमुच्चय।
एफ़िन किस्म और प्रोजेक्टिव बीजगणितीय किस्मों के लिए, कोडिमेंशन परिभाषित आदर्श (रिंग थ्योरी) की ऊंचाई (रिंग थ्योरी) के बराबर है। इस कारण से, किसी आदर्श की ऊंचाई को अक्सर उसका कोडिमेंशन कहा जाता है।
दोहरी अवधारणा सापेक्ष आयाम है।
परिभाषा
Codimension एक सापेक्ष अवधारणा है: यह केवल एक वस्तु के लिए दूसरे के अंदर परिभाषित किया गया है। कोई "सदिश स्थान (अलगाव में)" का कोडिमेंशन नहीं है, केवल वेक्टर उप-स्पेस का कोडिमेंशन है।
यदि W एक परिमित-विम सदिश समष्टि V की एक रैखिक उपसमष्टि है, तो V में W का 'कोडिमेंशन' विमाओं के बीच का अंतर है:
यह W के आयाम का पूरक है, इसमें W के आयाम के साथ, यह परिवेशी स्थान V के आयाम को जोड़ता है:
इसी प्रकार, यदि N, M में एक सबमनीफोल्ड या सबवैराइटी है, तो M में N का कोडिमेंशन है
जैसे सबमेनिफोल्ड का आयाम स्पर्शरेखा बंडल का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड पर ले जा सकते हैं), कोडिमेंशन सामान्य बंडल का आयाम है (आयामों की संख्या जिसे आप सबमेनिफोल्ड से हटा सकते हैं)।
अधिक आम तौर पर, यदि W एक (संभवतः अनंत आयामी) सदिश स्थान V का एक रैखिक उप-स्थान है, तो V में W का कोडिमेंशन भागफल स्थान (रैखिक बीजगणित) V/W का आयाम (संभवतः अनंत) है, जो अधिक अमूर्त रूप से जाना जाता है समावेशन के cokernel के रूप में। परिमित-आयामी वेक्टर रिक्त स्थान के लिए, यह पिछली परिभाषा से सहमत है
और कर्नेल (बीजगणित) के आयाम के रूप में सापेक्ष आयाम के लिए दोहरी है।
अनंत-आयामी रिक्त स्थान के परिमित-कोड-आयामी उप-स्थान अक्सर टोपोलॉजिकल वेक्टर स्पेस स्थान के अध्ययन में उपयोगी होते हैं।
कोडिमेंशन और डायमेंशन काउंटिंग की एडिटिविटी
कोडिमेंशन की मौलिक संपत्ति इसके प्रतिच्छेदन (सेट सिद्धांत) के संबंध में निहित है: यदि डब्ल्यू1 कोडिमेंशन k है1, और डब्ल्यू2 कोडिमेंशन k है2, तो यदि U कोडिंग j के साथ उनका प्रतिच्छेदन है तो हमारे पास है
- अधिकतम (के1, क2) ≤ जे ≤ के1 + के2.
वास्तव में j इस श्रेणी में कोई पूर्णांक मान ले सकता है। यह कथन आयामों के संदर्भ में अनुवाद की तुलना में अधिक सुस्पष्ट है, क्योंकि एक समीकरण की भुजाएँ केवल कोडिमेंशन का योग होती हैं। शब्दों में
- codimensions (अधिकतम) जोड़ें।
- यदि सबस्पेस या सबमेनिफोल्ड्स ट्रांसवर्सलिटी (गणित) (जो सामान्य स्थिति में होता है) को काटते हैं, तो कोडिमेंशन बिल्कुल जोड़ते हैं।
इस कथन को 'आयाम गणना' कहा जाता है, विशेष रूप से प्रतिच्छेदन सिद्धांत में।
दोहरी व्याख्या
दोहरे स्थान के संदर्भ में, यह काफी स्पष्ट है कि आयाम क्यों जुड़ते हैं। उप-स्थानों को एक निश्चित संख्या में रैखिक क्रियाओं के गायब होने से परिभाषित किया जा सकता है, जो कि अगर हम रैखिक रूप से स्वतंत्र होने के लिए लेते हैं, तो उनकी संख्या कोडिमेंशन है। इसलिए, हम देखते हैं कि डब्ल्यू को परिभाषित करने वाले रैखिक कार्यों के सेट के संघ (सेट सिद्धांत) को लेकर यू को परिभाषित किया गया हैi. वह संघ कुछ हद तक रैखिक निर्भरता का परिचय दे सकता है: j के संभावित मान उस निर्भरता को व्यक्त करते हैं, RHS योग के मामले में जहां कोई निर्भरता नहीं है। उप-स्थान को काटने के लिए आवश्यक कार्यों की संख्या के संदर्भ में कोडिमेंशन की यह परिभाषा उन स्थितियों तक फैली हुई है जिनमें परिवेश स्थान और उप-स्थान दोनों अनंत आयामी हैं।
दूसरी भाषा में, जो किसी भी प्रकार के प्रतिच्छेदन सिद्धांत के लिए बुनियादी है, हम एक निश्चित संख्या में बाधा (गणित) का संघ ले रहे हैं। हमारे पास देखने के लिए दो घटनाएं हैं:
- बाधाओं के दो सेट स्वतंत्र नहीं हो सकते हैं;
- बाधाओं के दो सेट संगत नहीं हो सकते हैं।
इनमें से पहले को अक्सर 'गिनती की बाधा (गणित) के सिद्धांत' के रूप में व्यक्त किया जाता है: यदि हमारे पास समायोजित करने के लिए कई एन पैरामीटर हैं (यानी हमारे पास स्वतंत्रता की एन डिग्री (भौतिकी और रसायन विज्ञान) है), और एक बाधा का मतलब है कि हमारे पास है इसे संतुष्ट करने के लिए एक पैरामीटर का 'उपभोग' करने के लिए, फिर समाधान सेट का कोडिमेंशन अधिक से अधिक बाधाओं की संख्या है। हम एक समाधान खोजने में सक्षम होने की उम्मीद नहीं करते हैं यदि अनुमानित कोडिमेंशन, यानी स्वतंत्र बाधाओं की संख्या एन से अधिक है (रैखिक बीजगणित मामले में, हमेशा एक तुच्छ, शून्य वेक्टर समाधान होता है, इसलिए छूट दी जाती है)।
दूसरा ज्यामिति का मामला है, समानांतर रेखाओं के मॉडल पर; यह कुछ ऐसा है जिस पर रैखिक बीजगणित के तरीकों से रैखिक समस्याओं के लिए चर्चा की जा सकती है, और जटिल संख्या क्षेत्र में प्रक्षेपण स्थान में गैर-रैखिक समस्याओं के लिए चर्चा की जा सकती है।
ज्यामितीय टोपोलॉजी में
ज्यामितीय टोपोलॉजी में कोडिमेंशन का भी कुछ स्पष्ट अर्थ है: कई गुना पर, कोडिमेंशन 1 एक सबमनीफोल्ड द्वारा टोपोलॉजिकल डिस्कनेक्शन का आयाम है, जबकि कोडिमेंशन 2 रेमिफिकेशन (गणित) और गाँठ सिद्धांत का आयाम है। वास्तव में, उच्च-आयामी मैनिफोल्ड्स का सिद्धांत, जो आयाम 5 और ऊपर में शुरू होता है, को वैकल्पिक रूप से कोडिमेंशन 3 में शुरू करने के लिए कहा जा सकता है, क्योंकि उच्च कोडिमेंशन समुद्री मील की घटना से बचते हैं। चूंकि शल्य चिकित्सा सिद्धांत को मध्य आयाम तक काम करने की आवश्यकता होती है, एक बार जब कोई आयाम 5 में होता है, तो मध्य आयाम में 2 से अधिक कोडिमेंशन होता है, और इसलिए गांठों से बचा जाता है।
यह चुटकी खाली नहीं है: कोडिमेंशन 2 में एम्बेडिंग का अध्ययन गाँठ सिद्धांत है, और कठिन है, जबकि कोडिमेंशन 3 या अधिक में एम्बेडिंग का अध्ययन उच्च-आयामी ज्यामितीय टोपोलॉजी के उपकरणों के लिए उत्तरदायी है, और इसलिए काफी आसान है।
यह भी देखें
- अंतर ज्यामिति और टोपोलॉजी की शब्दावली
संदर्भ
- "Codimension", Encyclopedia of Mathematics, EMS Press, 2001 [1994]