सबसे छोटा बहुभुज

From Vigyanwiki
Revision as of 11:25, 17 April 2023 by alpha>Indicwiki (Created page with "File:Biggest little polygon.svg|thumb|upright=1.3|6 भुजाओं वाला सबसे बड़ा छोटा बहुभुज (बाईं ओर); दा...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
6 भुजाओं वाला सबसे बड़ा छोटा बहुभुज (बाईं ओर); दाईं ओर नियमित बहुभुज समान व्यास लेकिन निचले क्षेत्र के साथ।

ज्यामिति में, किसी संख्या n के लिए सबसे बड़ा छोटा बहुभुज n-पक्षीय बहुभुज होता है जिसका व्यास एक होता है (अर्थात, इसके प्रत्येक दो बिंदु (ज्यामिति) एक दूसरे से इकाई दूरी के भीतर होते हैं) और जिसमें सभी व्यास-एक एन-गोंन्स के बीच सबसे बड़ा क्षेत्र है। एक गैर-अद्वितीय समाधान जब n = 4 एक वर्ग है, और समाधान एक नियमित बहुभुज है जब n एक विषम संख्या है, लेकिन समाधान अनियमित है अन्यथा।

चतुर्भुज

n = 4 के लिए, एक स्वेच्छ चतुर्भुज का क्षेत्रफल सूत्र S = pq sin(θ)/2 द्वारा दिया जाता है, जहां p और q चतुर्भुज के दो विकर्ण हैं और θ उन कोणों में से एक है जो वे एक दूसरे के साथ बनाते हैं। व्यास अधिकतम 1 होने के लिए, p और q दोनों स्वयं अधिकतम 1 होने चाहिए। इसलिए, चतुर्भुज का क्षेत्रफल सबसे बड़ा होता है, जब क्षेत्र सूत्र के तीन कारकों को व्यक्तिगत रूप से अधिकतम किया जाता है, p = q = 1 और sin( θ) = 1. वह शर्त जो p = q का अर्थ है कि चतुर्भुज एक समबाहु चतुर्भुज है (इसके विकर्णों की लंबाई समान है), और शर्त यह है कि sin(θ) = 1 का अर्थ है कि यह एक ओर्थोडायगोनल चतुर्भुज है (इसके विकर्ण दाहिनी ओर काटते हैं कोण)। इस प्रकार के चतुर्भुजों में इकाई-लंबाई वाले विकर्णों वाला वर्ग (ज्यामिति) शामिल है, जिसका क्षेत्रफल 1/2 है। हालांकि, अपरिमित रूप से कई अन्य ऑर्थोडायगोनल और समबाहु चतुर्भुजों का भी व्यास 1 होता है और उनका क्षेत्रफल वर्ग के समान होता है, इसलिए इस मामले में समाधान अद्वितीय नहीं है।[1]


पक्षों की विषम संख्या

n के विषम मानों के लिए, 1922 में कार्ल रेनहार्ट (गणितज्ञ) द्वारा यह दिखाया गया था कि एक नियमित बहुभुज में सभी व्यास-एक बहुभुज का क्षेत्रफल सबसे बड़ा होता है।[2]


भुजाओं की सम संख्या

मामले में n = 6, अद्वितीय इष्टतम बहुभुज नियमित नहीं है। इस मामले का समाधान 1975 में रोनाल्ड ग्राहम द्वारा प्रकाशित किया गया था, 1956 में हैनफ्रीड लेंज द्वारा पूछे गए एक प्रश्न का उत्तर देते हुए;[3] यह एक अनियमित समद्विबाहु पंचभुज का रूप ले लेता है, जिसके एक भुजा से जुड़ा एक अधिक समद्विबाहु त्रिभुज होता है, जिसमें त्रिभुज के शीर्ष से विपरीत पंचकोणीय शीर्ष तक की दूरी पंचकोण के विकर्णों के बराबर होती है।[4] इसका क्षेत्रफल 0.674981 है।... (sequence A111969 in the OEIS), एक संख्या जो समीकरण को संतुष्ट करती है

4096 x10 +8192x9 − 3008x8 − 30848x7 + 21056x6 + 146496x5 − 221360x4 + 1232x3 + 144464x2 − 78488x + 11993 = 0।

ग्राहम ने अनुमान लगाया कि n के सम मानों के सामान्य मामले के लिए इष्टतम समाधान एक समान विकर्ण (n − 1)-गॉन के समान होता है, जिसके एक तरफ एक समद्विबाहु त्रिभुज जुड़ा होता है, इसका शीर्ष विपरीत से इकाई दूरी पर होता है ( n − 1)-गॉन वर्टेक्स। मामले में n = 8 यह ऑडिट एट अल द्वारा एक कंप्यूटर गणना द्वारा सत्यापित किया गया था।[5] ग्राहम का प्रमाण कि उसका षट्भुज इष्टतम है, और n = 8 केस का कंप्यूटर प्रमाण, दोनों में सीधे किनारों के साथ सभी संभावित n-वर्टेक्स थ्रैकल्स का केस विश्लेषण शामिल है।

ग्राहम का पूर्ण अनुमान, n के सभी सम मानों के लिए सबसे बड़ी छोटी बहुभुज समस्या के समाधान की विशेषता, फोस्टर और स्जाबो द्वारा 2007 में सिद्ध किया गया था।[6]


यह भी देखें

  • हैनसेन का छोटा अष्टकोना
  • रीनहार्ट बहुभुज, बहुभुज अपने व्यास के लिए परिधि को अधिकतम करते हैं, उनके व्यास के लिए अधिकतम चौड़ाई, और उनके परिधि के लिए चौड़ाई को अधिकतम करते हैं

संदर्भ

  1. Schäffer, J. J. (1958), "Nachtrag zu Ungelöste Prob. 12", Elemente der Math., 13: 85–86. As cited by Graham (1975).
  2. Reinhardt, K. (1922), "Extremale Polygone gegebenen Durchmessers", Jahresbericht der Deutschen Mathematiker-Vereinigung, 31: 251–270.
  3. Lenz, H. (1956), "Ungelöste Prob. 12", EIemente der Math., 11: 86. As cited by Graham (1975).
  4. Graham, R. L. (1975), "The largest small hexagon" (PDF), Journal of Combinatorial Theory, Series A, 18 (2): 165–170, doi:10.1016/0097-3165(75)90004-7.
  5. Audet, Charles; Hansen, Pierre; Messine, Frédéric; Xiong, Junjie (2002), "The largest small octagon", Journal of Combinatorial Theory, Series A, 98 (1): 46–59, doi:10.1006/jcta.2001.3225, MR 1897923.
  6. Foster, Jim; Szabo, Tamas (2007), "Diameter graphs of polygons and the proof of a conjecture of Graham", Journal of Combinatorial Theory, Series A, 114 (8): 1515–1525, doi:10.1016/j.jcta.2007.02.006, MR 2360684.


बाहरी संबंध