गणित में, सामान्यीकृत मीट्रिक (दूरीक) की अवधारणा मीट्रिक का एक सामान्यीकरण है, जिसमें दूरी एक वास्तविक संख्या नहीं है, बल्कि एक यादृच्छिक क्रमित क्षेत्र से ली गई है।
सामान्य रूप से, जब हम दूरीक समष्टि को परिभाषित करते हैं तो दूरी फलन को वास्तविक मान फलन (गणित) के रूप में लिया जाता है। वास्तविक संख्याएँ एक क्रमित क्षेत्र बनाती हैं जो आर्किमिडीयन गुण और पूर्ण क्रमित क्षेत्र है। इन दूरीक समष्टि में कुछ अच्छे गुण होते हैं जैसे: दूरीक समष्टि में सुसंहिति, अनुक्रमिक सुसंहिति और गणनीय सुसंहिति समतुल्य आदि हैं। हालांकि, ये गुण इतनी आसानी से प्रग्रहण में नहीं आ सकते हैं, यदि दूरी फलन के अतिरिक्त यादृच्छिक क्रमित क्षेत्र में लिया जाता है।
प्रारंभिक परिभाषा
मान लीजिए कि यादृच्छिक क्रमित क्षेत्र हो, और अरिक्त समुच्च्य; एक फलन को पर एक मीट्रिक कहा जाता है, यदि निम्न स्थितियाँ हैं
- यदि और केवल यदि ;
- (समरूपता);
- (त्रिभुज असमानता)।
यह सत्यापित करना कठिन नहीं है कि विवृत गेंदें एक उपयुक्त संस्थिति के लिए एक आधार तैयार करें, बाद वाले को दूरीक संस्थिति पर में मीट्रिक के साथ
इस तथ्य को देखते हुए कि इसके क्रम में संस्थिति नीरस रूप से सामान्य है, हम उम्मीद करेंगे कम से कम नियमित स्थान होना।
और गुण
हालांकि, पसंद के स्वयंसिद्ध के तहत, प्रत्येक सामान्य मीट्रिक नीरस रूप से सामान्य है, क्योंकि, दिया गया है कहाँ ओपन है, ओपन बॉल है ऐसा है कि लेना मोनोटोन सामान्यता के लिए शर्तों की जाँच करें।
आश्चर्य की बात यह है कि, पसंद के बिना भी, सामान्य मेट्रिक्स नीरस रूप से सामान्य हैं।
सबूत।
केस I: एक आर्किमिडीयन क्षेत्र है।
अब यदि में खुला, हम ले सकते हैं कहाँ और चाल बिना पसंद के की जाती है।
केस II: एक गैर-आर्किमिडीयन क्षेत्र है।
माफ़ कर दिया कहाँ खुला है, सेट पर विचार करें
सेट खाली नहीं है। के लिए के रूप में ओपन है, ओपन बॉल है अंदर नहीं था गैर-आर्किमिडीयन है, ऊपर से घिरा नहीं है, इसलिए कुछ है ऐसा कि सभी के लिए लाना हमने देखा कि में है
अब परिभाषित करें हम दिखाएंगे कि इस mu संकारक के संबंध में, स्थान नीरस रूप से सामान्य है। ध्यान दें कि
यदि इसमें नहीं है (ओपन सेट युक्त ) और इसमें नहीं है (ओपन सेट युक्त ), तो हम उसे दिखाएंगे खाली है। यदि नहीं, तो कहिए चौराहे पर है। तब
ऊपर से हमें वह मिलता है
जो असंभव है क्योंकि इसका अर्थ यह भी होगा
से संबंधित
या
से संबंधित
यह प्रमाण को पूरा करता है।
यह भी देखें
बाहरी संबंध