अतिपरवलय
गणित में अतिपरवलय एक प्रकार का समतल में पड़ा हुआ चिकना वक्र है। जिसे इसके ज्यामितीय गुणों या समीकरणों द्वारा परिभाषित किया जाता है। जिसके लिए यह समाधान समुच्चय है। अतिपरवलय के दो टुकड़े होते हैं। जिन्हें घटक (ग्राफ सिद्धांत) या शाखाएँ कहा जाता है। जो एक दूसरे के दर्पण चित्र होते हैं और दो अनंत धनुष के समान होते हैं। अतिपरवलय तीन प्रकार के शंकु खंड में से एक है। जो एक समतल (गणित) और दोहरे शंकु (ज्यामिति) के प्रतिच्छेदन द्वारा इसका निर्माण होता है। (अन्य शंक्वाकार खंड परवलय और दीर्घवृत्त हैं। एक वृत्त दीर्घवृत्त की एक विशेष स्थिति है।) यदि सतह दोहरे शंकु के दोनों भागों को काटता है। किन्तु शंकु के शीर्ष से नहीं निकलता है। जिससे शंकु एक अतिपरवलय है।
अतिपरवलय कई प्रकार से उत्पन्न होते हैं:
- गुणक व्युत्क्रम का प्रतिनिधित्व करने वाले वक्र के रूप में कार्तीय समन्वय प्रणाली में स्थित हैं।[1]
- एक सौरघड़ी की नोक की छाया के बाद पथ के रूप में स्थित,
- एक खुली कक्षा के आकार के रूप में (एक बंद अण्डाकार कक्षा से अलग), जैसे कि गुरुत्वाकर्षण के समय अंतरिक्ष यान की कक्षा किसी ग्रह के स्विंग-बाय या अधिक सामान्यतः किसी भी अंतरिक्ष यान (या आकाशीय पिण्ड) से बचने के लिए निकटतम ग्रह या अन्य गुरुत्वाकर्षण पिंड का वेग,
- एक उप-परमाणु कण के रदरफोर्ड प्रकीर्णन के रूप में (आकर्षक बलों के अतिरिक्त प्रतिकारक द्वारा कार्य किया गया किन्तु सिद्धांत समान है),
- अतिपरवलय पूर्ण नेविगेशन में जब दो बिंदुओं की दूरियों के बीच का अंतर निर्धारित किया जा सकता है। किन्तु स्वयं दूरियों का नहीं निर्धारित किया जा सकता है,
और इसी प्रकार।
अतिपरवलय की प्रत्येक शाखा (गणित) में दो भुजाएँ होती हैं। जो अतिपरवलय के केंद्र से और अधिक सीधी (निचली वक्रता) बन जाती हैं। तिरछी विपरीत भुजाएँ प्रत्येक शाखा से एक सामान्य रेखा की सीमा में होती हैं। जिसे उन दो भुजाओं का स्पर्शोन्मुख कहा जाता है। तो दो स्पर्शोन्मुख हैं। जिनका प्रतिच्छेदन अतिपरवलय की समरूपता के केंद्र में है। जिसे दर्पण बिंदु के रूप में मान सकते हैं। जिससे प्रत्येक शाखा दूसरी अन्य शाखा का निर्माण करती है। वक्र की स्थिति में स्पर्शोन्मुख दो समन्वय अक्ष स्थित हैं।[2]
अतिपरवलय अनेक दीर्घवृत्तों के विश्लेषणात्मक गुणों को साझा करते हैं। जैसे उत्केन्द्रता (गणित), फ़ोकस (ज्यामिति) और डायरेक्ट्रीक्स (शंक्वाकार खंड)। सामान्यतः पत्राचार किसी शब्द में संकेत के परिवर्तन से अधिक नहीं किया जा सकता है। कई अन्य गणितीय वस्तु की उत्पत्ति अतिपरवलय में होती है। जैसे कि अतिपरवलय पूर्ण परवलय, हाइपरबोलोइड्स (कचरे की टोकरी), अतिपरवलय पूर्ण ज्यामिति (निकोलाई लोबचेव्स्की की प्रसिद्ध गैर- यूक्लिडियन ज्यामिति ), अतिपरवलय पूर्ण फंशन (सिंन, कोश, टैन आदि) और जायरोवेक्टर रिक्त स्थान (एक ज्यामिति सापेक्षता के सिद्धांत और क्वांटम यांत्रिकी दोनों में उपयोग के लिए प्रस्तावित किये जाते हैं। जो यूक्लिडियन ज्यामिति का भाग नहीं है)।
व्युत्पत्ति और इतिहास
अतिपरवलय शब्द ग्रीक भाषा से उत्पन्न हुआ है। जिसका अर्थ है- ओवर-थ्रो या अत्यधिक। जिससे अंग्रेजी शब्द अतिपरवलय भी उत्पन्न होता है। अतिपरवलय की खोज मेनेकमस ने क्यूब को दोगुना करने की समस्या की जांच में की थी। किन्तु तब इसे मोटे शंकु के खंड कहा जाता था।[3] ऐसा माना जाता है कि अतिपरवलय शब्द पेरगा के एपोलोनियस (सी. 262-सी. 190 ई.पू.) द्वारा शंकु वर्गों कॉनिक्स पर अपने निश्चित कार्य में बनाया गया है।[4] अन्य दो सामान्य शांकव वर्गों के नाम दीर्घवृत्त और परबोला कमी और निर्धारण के लिए संबंधित ग्रीक शब्दों से प्राप्त होते हैं। तीनों नाम पहले के पाइथागोरस शब्दावली से प्राप्त किये गए हैं। जो एक दिए गए रेखा खंड के साथ निश्चित क्षेत्र के आयतों के पक्ष की तुलना को संदर्भित करता है। आयत को खंड पर निर्धारित किया जा सकता है, अर्थात् एक समान लंबाई हो, खंड से छोटा हो या खंड से अधिक हो।[5]
परिभाषाएँ
बिंदुओं के स्थान के रूप में
यूक्लिडियन क्षेत्र में एक अतिपरवलय को ज्यामितीय रूप से बिंदुओं के समुच्चय (गणित) के रूप में परिभाषित किया जा सकता है।
- अतिपरवलय बिंदुओं का एक समूह है। जैसे कि किसी भी बिंदु के लिए समुच्चय का, दूरियों का पूर्ण अंतर दो निश्चित बिंदुओं के लिए (फोकी) स्थिर है। सामान्यतः द्वारा निरूपित किया जाता है:[6]
मध्यबिंदु केन्द्रों को मिलाने वाले रेखाखंड के भाग को अतिपरवलय का केंद्र कहा जाता है।[7] केन्द्रों से होकर जाने वाली रेखा को दीर्घ अक्ष कहते हैं। इसमें शीर्ष होते हैं। जिसमें केंद्र से दूरी हो। दूरी केंद्र के लिए केन्द्रों की फोकल दूरी या रैखिक उत्केन्द्रता कहा जाता है। भागफल विलक्षणता है।
समीकरण अलग प्रकार से देखा जा सकता है। (आरेख देखें):
यदि मध्यबिंदु और त्रिज्या वाला वृत्त है। फिर एक बिंदु की दूरी सर्कल के लिए सही शाखा की फोकस की दूरी के बराबर है-
समीकरण y=A/x के साथ अतिपरवलय
यदि xy-निर्देशांक प्रणाली कोण द्वारा उत्पत्ति के विषय में रोटेशन मैट्रिक्स कोण और नए निर्देशांक को प्रदान किया गया है। जिससे-
आयताकार अतिपरवलय (जिसके अर्ध-अक्ष बराबर हैं) का नया समीकरण है।
को हल करने के लिये।
इस प्रकार एक xy-निर्देशांक प्रणाली में एक फलन का ग्राफ़ समीकरण के साथ एक आयताकार अतिपरवलय पूर्णतयः पहले और तीसरे चतुर्भुज (क्षेत्र ज्यामिति) में स्थित होता है।
- निर्देशांक अक्ष स्पर्शोन्मुख के रूप में,
- रेखा प्रमुख अक्ष के रूप में,
- बीच में और अर्ध-अक्ष
- शीर्ष
- शीर्षों पर अर्ध-अक्षांश और वक्रता की त्रिज्या
- रैखिक विकेन्द्रता और विलक्षणता
- स्पर्शरेखा बिंदु पर
द्वारा मूल अतिपरवलय का घूर्णन दूसरे और चौथे चतुर्भुज में पूर्णतयः एक आयताकार अतिपरवलय का परिणाम होता है। समान स्पर्शोन्मुख, केंद्र, अर्ध-अक्षांश, शीर्ष पर वक्रता की त्रिज्या, रैखिक उत्केन्द्रता और विलक्षणता के स्थिति के लिए रोटेशन दिये गये समीकरण के साथ है-
-
- अर्ध-अक्ष
- रेखा प्रमुख धुरी के रूप में,
- शीर्ष
अतिपरवलय को समीकरण के साथ स्थानांतरित करना। जिससे नया केंद्र हो और नया समीकरण प्रदान करता है और नए स्पर्शोन्मुख और हैं।
आकार के पैरामीटर हैं। जिनमें कोई भी परिवर्तन नहीं होता है।
डायरेक्ट्रिक्स के गुणों के द्वारा
की दूरी पर दो लाइनें केंद्र से और लघु अक्ष के समानांतर अतिपरवलय की निदेशिका कहलाती है (आरेख देखें)।
अनगिनत बिंदु के लिए अतिपरवलय के एक फोकस और संबंधित नियता की दूरी का भागफल (आरेख देखें) उत्केन्द्रता के बराबर है:
जोड़ी के लिए प्रमाण इस तथ्य से अनुसरण करता है कि और समीकरण को संतुष्ट करें।
दूसरा स्थिति समान रूप से सिद्ध होता है।
विपरीत जानकारी भी सही है और एक अतिपरवलय को परिभाषित करने के लिए इसका प्रयोग किया जा सकता है (पैराबोला की परिभाषा के समान प्रकार से):
किसी भी बिंदु के लिए (फोकस), कोई भी रेखा (डायरेक्ट्रीक्स) के माध्यम से नहीं और कोई वास्तविक संख्या साथ बिंदुओं का समूह (बिंदुओं का स्थान), जिसके लिए बिंदु और रेखा की दूरियों का भागफल है।
- एक अतिपरवलय है।
(विकल्प एक पैराबोला उत्पन्न करता है और यदि एक दीर्घवृत्त।)
- प्रमाण-
माना कि और माना कि वक्र पर एक बिंदु है।
निर्देशक समीकरण है और इसके साथ , जिसके साथ का संबंध समीकरण प्रदर्शित करता है।
- और
प्रतिस्थापन उत्पन्न करता है।
यह दीर्घवृत्त का समीकरण () या परवलय () या अतिपरवलय () है। इन सभी गैर-डिजनरेट शांकवों में सामान्यतः शीर्ष के रूप में मूल स्थित होता है (आरेख देखें)।
यदि , नए पैरामीटर प्रस्तुत करें। जिससे , और फिर उपरोक्त समीकरण का निर्माण हो जाता है।
जो केंद्र के साथ अतिपरवलय का समीकरण है और x-अक्ष प्रमुख अक्ष के रूप में और प्रमुख / लघु अर्ध अक्ष है।
एक डायरेक्ट्रिक्स का निर्माण
के कारण बिंदु डायरेक्ट्रिक्स का (आरेख देखें) और फोकस करें वृत्त पर वृत्त व्युत्क्रम के संबंध में व्युत्क्रम हैं (आरेख हरे रंग में)। इसलिए बिंदु थेल्स के प्रमेय (आरेख में नहीं दिखाया गया) का उपयोग करके निर्माण किया जा सकता है। निर्देशांक बिंदु के माध्यम से रेखा के लंबवत है।
का वैकल्पिक निर्माण: गणना से यह ज्ञात होता है कि वह बिंदु इसके माध्यम से लंबवत के साथ स्पर्शोन्मुख का क्रास है (आरेख देखें)।
एक शंकु के समतल खंड के रूप में
शंकु पर रेखाओं की ढलान से अधिक ढलान वाले शीर्ष के माध्यम से नहीं एक समतल द्वारा एक सीधे दोहरे शंकु का प्रतिच्छेदन एक अतिपरवलय है (आरेख देखें: लाल वक्र)। अतिपरवलय (ऊपर देखें) की परिभाषित गुण को प्रमाणित करने के लिए दो डंडेलिन क्षेत्रों का उपयोग किया जाता है। जो गोले हैं। जो शंकु को वृत्तों , के साथ स्पर्श करते हैं और बिंदुओं पर प्रतिच्छेदी (अतिपरवलय ) तल और हैं। जिससे यह जानकारी प्राप्त होती है: अतिपरवलय के फोकी हैं।
- माना प्रतिच्छेदन वक्र का अनगिनत बिंदु हो।
- शंकु युक्त जेनरेट्रिक्स वृत्त को बिंदु पर और वृत्त एक बिंदु पर प्रतिच्छेदित करता है।
- रेखा खंड और गोले के स्पर्शरेखा हैं और इसलिए समान लंबाई के बराबर हैं।
- रेखा खंड और गोले के स्पर्शरेखा हैं और इसलिए, समान लंबाई के बराबर हैं।
- परिणाम यह है कि अतिपरवलय बिंदु से स्वतंत्र है क्योंकि कोई बदलाव नहीं होता है कि बिंदु कहाँ पर स्थित है, केन्द्रों , पर होना है और रेखा खंड शीर्ष को पार करता है। इसलिए बिंदु के रूप में लाल वक्र (अतिपरवलय ), रेखा खंड के साथ चलता है। परन्तु स्वयं की लंबाई को बिना बदलाव के एपेक्स के बारे में घूमता है।
पिन और स्ट्रिंग निर्माण
एक अतिपरवलय की परिभाषा इसके फोकी और इसके परिपत्र निदेशकों (ऊपर देखें) द्वारा पिन, एक स्ट्रिंग और एक मापदंड की सहायता से चाप खींचने के लिए प्रयोग किया जा सकता है:[10]
- फोकस चुनें, शीर्ष और उदाहरण के लिए एक वृत्ताकार निर्देश (त्रिज्या के साथ सर्कल ) है।
- एक मापदंड बिंदु पर निर्धारित होता है और चारों ओर घूमने के लिए स्वतंत्र बिंदु दूरी पर अंकित है।
- लंबाई के साथ एक तार तैयार है।
- स्ट्रिंग का एक छोर बिंदु मापदंड पर पर पिन किया गया है। दूसरे छोर को इंगित करने के लिए पिन किया गया है।
- एक पेन लें और डोरी को रूलर के किनारे से शक्ति से पकड़ें।
- मापदंड को चारों ओर घुमाना अतिपरवलय की दाहिने भाग का चाप बनाने के लिए पेन को संकेत देता है क्योंकि (परिपत्र निर्देशों द्वारा अतिपरवलय की परिभाषा देखें)।
अतिपरवलय की स्टेनर पीढ़ी
अतिपरवलय के एकल बिंदुओं के निर्माण के लिए निम्नलिखित विधि स्टेनर शांकव पर निर्भर करती है:
- दो पेंसिल दो बिंदुओं पर रेखाओं का (सभी पंक्तियां और क्रमशः सम्मिलित हैं।) हैं और एक प्रक्षेपी का पर है। किन्तु परिप्रेक्ष्य मानचित्रण नहीं है। तो संबंधित रेखाओं के प्रतिच्छेदन बिंदु एक गैर-डिजनरेट प्रक्षेपी शांकव खंड बनाते हैं।
अतिपरवलय के बिंदुओं के क्रम के लिए कोई शीर्ष पर पेंसिल का उपयोग करता है। माना कि अतिपरवलय का एक बिंदु बनें और रेखा खंड को समान दूरी वाले खंडों में विभाजित किया गया है और इस विभाजन को विकर्ण के समानांतर प्रक्षेपित किया गया है। रेखा खंड पर दिशा के रूप में (आरेख देखें) समानांतर प्रक्षेपण पेंसिल के बीच प्रोजेक्टिव मैपिंग का भाग है। शीर्ष और की आवश्यकता है। किसी भी दो संबंधित रेखाओं के प्रतिच्छेदन बिंदु और विशिष्ट रूप से परिभाषित अतिपरवलय के बिंदु हैं।
टिप्पणी: उपखंड को बिंदुओं और अधिक अंक प्राप्त करने के लिए आगे बढ़ाया जा सकता है। किन्तु प्रतिच्छेदन बिंदुओं का निर्धारण अधिक गलत हो जाएगा। एक उत्तम विचार समरूपता द्वारा पहले से निर्मित बिंदुओं का विस्तार करना है (एनीमेशन देखें)।
टिप्पणी:
- दीर्घवृत्त और परवलय के लिए भी स्टेनर पीढ़ी उपस्थित है।
- स्टाइनर पीढ़ी को संभवतः एक समांतर चतुर्भुज विधि कहा जाता है क्योंकि कोई अन्य बिंदुओं का उपयोग कर सकता है। कोनों के स्थान के अतिरिक्त इसका प्रयोग किया जा सकता है। जो एक आयत के अतिरिक्त एक समांतर चतुर्भुज से प्रारम्भ होता है।
अतिपरवलय y = a/(x - b) + c और 3-बिंदु-रूप के लिए निर्धारित कोण
समीकरण के साथ अतिपरवलय विशिष्ट रूप से तीन बिंदुओं भिन्न x- और y-निर्देशांक के द्वारा निर्धारित किया जाता है। आकृति मापदंडों को निर्धारित करने का एक सरल उपाय अतिपरवलय के लिए उत्कीर्ण कोण प्रमेय का उपयोग करता है।
- समीकरणों वाली दो रेखाओं के बीच 'कोण मापने' के लिए इस संदर्भ में भागफल का उपयोग किया जाता है-
वृत्तों के लिए उत्कीर्ण कोण प्रमेय के अनुरूप एक प्राप्त होता है।
अतिपरवलय के लिए इन्सक्रिब्ड कोण प्रमेय[11][12]
- चार बिंदुओं (आरेख देखें) के लिए निम्नलिखित कथन सत्य है:
- चार बिंदु समीकरण के साथ एक अतिपरवलय पर हैं। यदि और केवल यदि कोण पर और उपरोक्त माप के अर्थ में बराबर हैं। अर्थात् यदि-
(प्रमाण: सीधी गणना। यदि बिंदु एक अतिपरवलय पर हैं। तो कोई यह मान सकता है कि अतिपरवलय का समीकरण है।)
अतिपरवलय के लिए उत्कीर्ण कोण प्रमेय का एक परिणाम है।
अतिपरवलय समीकरण का 3-बिंदु-रूप:
अतिपरवलय का समीकरण 3 बिंदुओं से निर्धारित होता है। समीकरण का हल है
- के लिए।
यूनिट अतिपरवलय x² - y² = 1 की एक सजातीय छवि के रूप में
अतिपरवलय की अन्य परिभाषा अफीन परिवर्तनों का उपयोग करती है:
- कोई भी अतिपरवलय समीकरण के साथ इकाई अतिपरवलय की सजातीय छवि है।
पैरामीट्रिक प्रतिनिधित्व-
यूक्लिडियन क्षेत्र के एक सजातीय परिवर्तन का रूप है। जहां एक नियमित मैट्रिक्स (गणित) है। (इसका निर्धारक 0 नहीं है) और एक अनगिनत वेक्टर है। यदि मैट्रिक्स के कॉलम वैक्टर हैं। इकाई अतिपरवलय अतिपरवलय पर मैप किया गया है।
केंद्र है, अतिपरवलय का एक बिंदु और इस बिंदु पर एक स्पर्शरेखा सदिश है।
कोने-
सामान्यतः वैक्टर लंबवत नहीं हैं। अर्थात् सामान्यतः अतिपरवलय के शीर्ष नहीं हैं। किन्तु स्पर्शोन्मुख की दिशाओं में निर्देशित करें। बिंदु पर स्पर्शरेखा सदिश है।
क्योंकि एक शीर्ष पर स्पर्शरेखा अतिपरवलय के प्रमुख अक्ष के लंबवत होती है। समीकरण से एक शीर्ष को पैरामीटर प्राप्त होता है।
और इसलिए-
जो उत्पन्न होता है-
(सूत्र प्रयोग किया गया।)
अतिपरवलय के दो शीर्ष हैं ।
निहित प्रतिनिधित्व-
के लिए पैरामीट्रिक प्रतिनिधित्व को क्रैमर के नियम को द्वारा हल करना और उपयोग द्वारा किसी को निहित प्रतिनिधित्व प्राप्त होता है।
- .
अंतरिक्ष में अतिपरवलय -
इस खंड में एक अतिपरवलय की परिभाषा अंतरिक्ष में भी एक अनगिनत अतिपरवलय का पैरामीट्रिक प्रतिनिधित्व देती है। यदि कोई अंतरिक्ष में वैक्टर बनने के लिए अनुमति देता है।
अतिपरवलय y = 1/x की एक सजातीय छवि के रूप में
क्योंकि इकाई अतिपरवलय अतिपरवलय के समान रूप से के समतुल्य है। एक अनगिनत अतिपरवलय को अतिपरवलय की सजातीय छवि (पिछला अनुभाग देखें) के रूप में माना जा सकता है।
अतिपरवलय वैक्टर का केंद्र है, स्पर्शोन्मुख की दिशाएँ हैं और अतिपरवलय का एक बिंदु है। स्पर्शरेखा सदिश है।
एक शीर्ष पर स्पर्शरेखा प्रमुख अक्ष के लंबवत होती है। अतः
और शीर्ष का पैरामीटर है।
, के बराबर है और अतिपरवलय के शीर्ष हैं।
इस खंड में प्रस्तुत किए गए अतिपरवलय के प्रतिनिधित्व का उपयोग करके अतिपरवलय के निम्नलिखित गुण सरलता से सिद्ध होते हैं।
स्पर्शरेखा निर्माण-
स्पर्शरेखा सदिश को गुणनखंड द्वारा फिर से लिखा जा सकता है:
इसका अर्थ यह है कि-
- विकर्ण समांतर चतुर्भुज का अतिपरवलय बिंदु पर स्पर्शरेखा के समानांतर है (आरेख देखें)।
यह गुण अतिपरवलय पर एक बिंदु पर स्पर्शरेखा बनाने का एक उपाय प्रदान करती है।
अतिपरवलय की यह गुण पास्कल के प्रमेय के 3-बिंदु-अपघटन का एक संबधित संस्करण है।[13]
ग्रे समांतर चतुर्भुज का क्षेत्रफल
ग्रे समांतरोग्राम का क्षेत्र उपरोक्त आरेख में है।
और इसलिए बिंदु से स्वतंत्र अंतिम समीकरण स्थिति की गणना से प्राप्त होता है। जहां एक शीर्ष है और अतिपरवलय अपने विहित रूप में है।
बिंदु निर्माण-
पैरामीट्रिक प्रतिनिधित्व वाले अतिपरवलय के लिए (सरलता के लिए केंद्र मूल है) निम्नलिखित सत्य है:
- किन्हीं दो बिंदुओं के लिए बिन्दु
- अतिपरवलय के केंद्र के साथ संरेख हैं (आरेख देखें)।
सरल प्रमाण समीकरण का एक परिणाम है।
यह गुण अतिपरवलय के अंक बनाने की संभावना प्रदान करती है। यदि स्पर्शोन्मुख और एक बिंदु दिया जाता है।
अतिपरवलय की यह गुण पास्कल के प्रमेय के 4-बिंदु-अपघटन का एक सजातीय संस्करण है।[14]
स्पर्शरेखा-स्पर्शस्पर्शी-त्रिभुज
साधारणतयः अतिपरवलय का केंद्र मूल और सदिश समान लंबाई हो सकता है। यदि अंतिम धारणा पूरी नहीं हुई है। तो धारणा को सही करने के लिए पहले एक पैरामीटर परिवर्तन (ऊपर देखें) निर्धारित कर सकते हैं। अत शीर्ष हैं, छोटी धुरी और और . एक समान हो जाता है।
बिंदु पर स्पर्शरेखा के प्रतिच्छेदन बिंदुओं के लिए स्पर्शोन्मुख के साथ एक अंक प्राप्त करता है।
त्रिभुज का क्षेत्रफल 2 × 2 निर्धारक द्वारा गणना की जा सकती है:
(निर्धारकों के लिए नियम देखें)।
द्वारा उत्पन्न रोम्बस का क्षेत्र है। एक समचतुर्भुज का क्षेत्रफल उसके विकर्णों के गुणनफल के आधे के बराबर होता है। अतिपरवलय का विकर्ण अर्ध-अक्ष हैं। अत:-
- त्रिभुज का क्षेत्रफल अतिपरवलय के बिंदु से स्वतंत्र है:
एक वृत्त का व्युत्क्रम-
वृत्त C में वृत्त B का पारस्परिक (ज्यामिति) सदैव एक अतिपरवलय जैसे शंकु खंड उत्पन्न करता है। वृत्त C में पारस्परिकता की प्रक्रिया में क्रमशः प्रत्येक रेखा और बिंदु को उनके संबंधित ध्रुव और ध्रुवीय के साथ एक ज्यामितीय आकृति में बदलना सम्मिलिति है। वृत्त C के निकटतम बिंदु का वृत्त व्युत्क्रम एक रेखा का ध्रुव व्युत्क्रम ज्यामिति है। जबकि एक बिंदु का ध्रुवीय विलोम है, अर्थात् एक रेखा जिसका निकटतम बिंदु C बिंदु का व्युत्क्रम है।
पारस्परिकता द्वारा प्राप्त शंक्वाकार खंड की उत्केन्द्रता, दो वृत्तों के केंद्रों के बीच की दूरी का अनुपात व्युत्क्रम वृत्त C की त्रिज्या r से है। यदि 'B' और 'C' संबंधित वृत्तों के केंद्रों पर बिंदुओं का प्रतिनिधित्व करते हैं। तो
चूँकि एक अतिपरवलय की उत्केन्द्रता सदैव एक से अधिक होती है। केंद्र B को प्रत्यागामी वृत्त C के बाहर स्थित होना चाहिए।
इस परिभाषा का अर्थ यह है कि अतिपरवलय वृत्त B की स्पर्श रेखाओं के ध्रुवों का लोकस (गणित) दोनों है। इसके साथ ही B पर बिंदुओं की ध्रुवीय रेखाओं का आवरण (गणित) है। इसके विपरीत सर्कल 'B' अतिपरवलय पर बिंदुओं के ध्रुवों का कवर है और अतिपरवलय को स्पर्शरेखा रेखाओं के ध्रुवों का स्थान है। B की दो स्पर्श रेखाओं का कोई (परिमित) ध्रुव नहीं है क्योंकि वे पारस्परिक वृत्त C के केंद्र C से होकर निकलती हैं। 'B' पर संबंधित स्पर्शरेखा बिंदुओं के ध्रुव अतिपरवलय के स्पर्शोन्मुख हैं। अतिपरवलय की दो शाखाएँ वृत्त B के दो भागों के अनुरूप हैं। जो इन स्पर्शरेखा बिंदुओं से विभाजित होती हैं।
द्विघात समीकरण
अतिपरवलय को समतल (ज्यामिति) में कार्तीय निर्देशांक (x, y) में द्वितीय-डिग्री समीकरण के रूप में भी परिभाषित किया जा सकता है।
बशर्ते कि स्थिरांक Axx, Axy, Ayy, Bx, By, और C निर्धारक स्थिति को पूरा करते हैं।
इस निर्धारक को पारंपरिक रूप से विवेचक कहा जाता है। जो शंक्वाकार खंड के शंकु खंड का होता है।[15]
अतिपरवलय का एक विशेष स्थिति- डिजनरेट अतिपरवलय जिसमें दो अन्तर्विभाजक रेखाएँ होती हैं। ऐसा तब प्रदर्शित होता है, जब एक अन्य निर्धारक शून्य होता है:
इस निर्धारक Δ को संभवतः शांकव परिच्छेद का विविक्तकर कहा जाता है।[16]
कार्टेसियन निर्देशांक में अतिपरवलय के उपरोक्त सामान्य पैरामीट्रिजेशन को देखते हुए गुणांक के संदर्भ में कॉनिक सेक्शन सूत्र का उपयोग करके प्राप्त किया जा सकता है।
केंद्र (xc, yc) अतिपरवलय के सूत्रों से निर्धारित किया जा सकता है।
नए निर्देशांक के संदर्भ में, ξ = x − xc और η = y − yc, अतिपरवलय के परिभाषित समीकरण को लिखा जा सकता है।
अतिपरवलय के प्रमुख अक्ष, धनात्मक x-अक्ष के साथ φ कोण बनाते हैं, जो इसके द्वारा दिया गया है।
निर्देशांक अक्षों को घुमाना, जिससे x-अक्ष अनुप्रस्थ अक्ष के साथ संरेखित हो। जिससे समीकरण को उसके 'विहित रूप' में दर्शाता है।
मेजर और माइनर सेमीअक्स a और b को समीकरणों द्वारा परिभाषित किया गया है।
जहां λ1 और λ2 द्विघात समीकरण के मूल हैं।
तुलना के लिए, एक डिजनरेट अतिपरवलय (दो प्रतिच्छेदी रेखाओं से मिलकर) के लिए संबंधित समीकरण है।
किसी दिए गए बिंदु पर स्पर्श रेखा (x0, y0) अतिपरवलय पर समीकरण द्वारा परिभाषित किया गया है।
जहां E, F और G द्वारा परिभाषित किया गया है।
एक ही बिंदु पर अतिपरवलय के लिए सामान्य (ज्यामिति) समीकरण द्वारा दिया जाता है।
सामान्य रेखा स्पर्श रेखा के लंबवत होती है और दोनों एक ही बिंदु (x0, y0) से निकलते हैं।
समीकरण से-
बायां फोकस है और सही फोकस है। जहां e विलक्षणता है। एक बिंदु (x, y) से बाएँ और दाएँ नाभियों के रूप में दूरियों और को निरूपित करें। दाहिने भाग पर एक बिंदु के लिए,
और बाईं शाखा पर एक बिंदु के लिए,
इसे इस प्रकार प्रमाणित किया जा सकता है:
यदि (x,y) अतिपरवलय पर एक बिंदु है। जिससे बाएं फोकल बिंदु की दूरी है।
दाएँ केंद्र बिंदु के लिए दूरी है-
यदि (x,y) अतिपरवलय की दाहिने भाग पर एक बिंदु है। तब और
इन समीकरणों को एक-दूसरे से घटाने पर प्राप्त होता है।
यदि (x,y) तब अतिपरवलय की बांये भाग पर एक बिंदु है। तब और
इन समीकरणों को घटाने पर प्राप्त होता है।
कार्तीय निर्देशांक में
समीकरण
यदि कार्टेशियन निर्देशांक प्रस्तुत किए जाते हैं। जैसे मूल अतिपरवलय का केंद्र है और x-अक्ष प्रमुख अक्ष है। जिससे अतिपरवलय को पूर्व-पश्चिम-प्रारम्भ कहा जाता है और
अनगिनत बिंदु के लिए फोकस की दूरी है।
और दूसरे फोकस के लिए . इसलिए बिंदु अतिपरवलय पर है। यदि निम्न शर्त पूरी होती है।
उपयुक्त वर्गों द्वारा वर्गमूलों को हटाया जाये और संबंध का उपयोग करें। अतिपरवलय का समीकरण प्राप्त करने के लिए:
इस समीकरण को अतिपरवलय का विहित रूप कहा जाता है क्योंकि कोई भी अतिपरवलय कार्टेशियन अक्षों के सापेक्ष इसके अभिविन्यास की देखरेख किए बिना और इसके केंद्र के स्थान की देखरेख किए बिना चर के परिवर्तन द्वारा इस रूप में परिवर्तित किया जा सकता है। जो एक अतिपरवलय मूल से सर्वांगसमता (ज्यामिति) देता है (द्विघात समीकरण देखें)।
समरूपता या प्रमुख अक्षों के अक्ष अनुप्रस्थ अक्ष हैं (लंबाई 2a के खंड को कोने पर समापन बिंदु के साथ) और संयुग्मित अक्ष (लंबाई 2b के खंड को अनुप्रस्थ अक्ष पर लंबवत और अतिपरवलय के केंद्र में मध्य बिंदु के साथ)।[19] दीर्घवृत्त के विपरीत अतिपरवलय में केवल दो शीर्ष होते हैं: . दो अंक संयुग्मी अक्षों पर अतिपरवलय पर नहीं हैं।
यह समीकरण से अनुसरण करता है कि अतिपरवलय दोनों समन्वय अक्षों के संबंध में सममित है और इसलिए मूल के संबंध में सममित हैें।
विलक्षणता
उपरोक्त विहित रूप में एक अतिपरवलय के लिए विलक्षणता (गणित) द्वारा दी गई है।
दो अतिपरवलय एक दूसरे से समानता (ज्यामिति) हैं। जिसका अर्थ है कि उनका आकार समान है। जिससे अनुवाद (गणित), रोटेशन (गणित), प्रतिबिंब (गणित) और स्केलिंग (आवर्धन) द्वारा एक को दूसरे के साथ बदला जा सके। यदि और केवल यदि उनके पास समान विलक्षणता प्राप्त होती है।
स्पर्शोन्मुख
के लिए अतिपरवलय के समीकरण (ऊपर) को हल करना-
इससे यह जानकारी प्राप्त होती है कि अतिपरवलय दो रेखाओं तक पहुंचता है।
बड़े मूल्यों के लिए . ये दो रेखाएँ केंद्र (मूल) पर प्रतिच्छेद करती हैं और अतिपरवलय की अनन्तस्पर्शी कहलाती हैं।[20]
दूसरे चित्र की सहायता से यह जानकारी प्राप्त की जा सकता है।
- फोकस से किसी भी स्पर्शोन्मुख की लम्बवत दूरी (अर्ध-लघु अक्ष) है।
हेसे सामान्य रूप से स्पर्शोन्मुख और अतिपरवलय के समीकरण को प्राप्त होता है:[21]
- अतिपरवलय पर एक बिंदु से दोनों स्पर्शोन्मुख तक की दूरी का उत्पाद स्थिर है। जिसे विलक्षणता e के रूप में भी लिखा जा सकता है।
समीकरण से अतिपरवलय (ऊपर) से कोई भी प्राप्त कर सकता है:
- एक बिंदु P से दो शीर्षों तक की रेखाओं के ढलानों का गुणनफल स्थिरांक होता है।
इसके अतिरिक्त ऊपर (2) से यह दिखाया जा सकता है कि[21] अतिपरवलय पर एक बिंदु से स्पर्शोन्मुख के समानांतर रेखाओं के साथ स्पर्शोन्मुख तक की दूरी का उत्पाद स्थिर है।
सेमी-लेटस रेक्टम
अतिपरवलय के प्रमुख अक्ष के लम्बवत् एक फोकी के माध्यम से जीवा की लंबाई को केन्द्र रेक्टम कहा जाता है। इसका आधा अर्ध-लेटस रेक्टम है। एक गणना दर्शाती है कि-
अर्ध-लेटस रेक्टम शीर्षों पर वक्रता की त्रिज्या के रूप में भी देखा जा सकता है।
स्पर्शरेखा
एक बिंदु पर स्पर्शरेखा के समीकरण को निर्धारित करने का सबसे सरल उपाय निहित अतिपरवलय का समीकरण है। dy/dx को y′ के रूप में न मानते हुए यह प्रदर्शित करता है।
इसके संबंध में , बिंदु पर स्पर्शरेखा का समीकरण है।
एक विशेष स्पर्शरेखा रेखा अतिपरवलय को अन्य शंकु वर्गों से विभाजित करती है।[22] माना कि f शीर्ष V (अतिपरवलय और इसके अक्ष दोनों पर दो फोकस के माध्यम से) से निकट फोकस तक की दूरी है। फिर दूरी उस अक्ष के लंबवत रेखा के साथ उस फोकस से अतिपरवलय पर एक बिंदु P तक 2f से अधिक है। P पर अतिपरवलय की स्पर्श रेखा उस अक्ष को बिंदु Q पर 45° से अधिक के कोण ∠PQV पर प्रतिच्छेद करती है।
आयताकार अतिपरवलय
यदि अतिपरवलय को आयताकार (या समबाहु) कहा जाता है क्योंकि इसके स्पर्शोन्मुख समकोण पर प्रतिच्छेद करते हैं। इस स्थिति के लिए रैखिक विलक्षणता है। विलक्षणता और अर्ध-लेटस रेक्टम . समीकरण का ग्राफ एक आयताकार अतिपरवलय है।
अतिपरवलय पूर्ण साइन/कोसाइन के साथ पैरामीट्रिक प्रतिनिधित्व
अतिपरवलय पूर्ण फलन का उपयोग करना , अतिपरवलय का पैरामीट्रिक प्रतिनिधित्व प्राप्त किया जा सकता है। जो दीर्घवृत्त के पैरामीट्रिक प्रतिनिधित्व के समान है:
जो कार्टेशियन समीकरण को संतुष्ट करता है क्योंकि
आगे के पैरामीट्रिक निरूपण नीचे दिए गए अनुभाग पैरामेट्रिक समीकरणों में दर्शाये गए हैं।
संयुग्मी अतिपरवलय
और संयुग्म अतिपरवलय का समीकरण प्राप्त करने के लिए बदलाव (आरेख देखें):
- रूप में भी लिखा है।
ध्रुवीय निर्देशांक में
ध्रुव के लिए = फोकस
अतिपरवलय के लिए सामान्यतः उपयोग किए जाने वाले ध्रुवीय निर्देशांक को कार्टेशियन समन्वय प्रणाली के सापेक्ष परिभाषित किया जाता है। जिसका 'फ़ोकस में मूल' होता है और इसका x-अक्ष कैनोनिकल समन्वय प्रणाली की उत्पत्ति की ओर आदेश करता है। जैसा कि पहले चित्र में दिखाया गया है।
इस स्थिति में कोण सच्ची विसंगति कहलाती है।
इस समन्वय प्रणाली के सापेक्ष किसी के पास एक है।
और
ध्रुव = केंद्र के लिए
विहित समन्वय प्रणाली के सापेक्ष ध्रुवीय निर्देशांक के साथ (दूसरा आरेख देखें)। एक के पास है।
अतिपरवलय की दाहिने भाग के लिए की सीमा है।
पैरामीट्रिक समीकरण
समीकरण के साथअतिपरवलय कई पैरामीट्रिक समीकरणों द्वारा वर्णित किया जा सकता है:
- (तर्कसंगत प्रतिनिधित्व)।
- स्पर्शरेखा ढलान पैरामीटर के रूप में:
- एक पैरामीट्रिक प्रतिनिधित्व, जो ढलान का उपयोग करता है, अतिपरवलय के एक बिंदु पर स्पर्शरेखा को दीर्घवृत्त स्थिति के अनुरूप प्राप्त किया जा सकता है: द्वारा दीर्घवृत्त स्थिति में बदलें और अतिपरवलय पूर्ण कार्यों के लिए सूत्रों का उपयोग करें। एक प्राप्त होता है।
- अतिपरवलय का ऊपर का भाग है और निचला आधा भाग है। ऊर्ध्वाधर स्पर्शरेखा वाले बिंदु (कोने ) प्रतिनिधित्व के अंतर्गत नहीं आते हैं।
- बिंदु पर स्पर्शरेखा का समीकरण है।
- अतिपरवलय के स्पर्शरेखाओं का यह विवरण अतिपरवलय के ऑर्थोप्टिक (ज्यामिति) के निर्धारण के लिए महत्वपूर्ण उपकरण सिद्ध होता है।
अतिपरवलय पूर्ण कार्य
जिस प्रकार त्रिकोणमितीय फलनों को इकाई वृत्त के संदर्भ में परिभाषित किया जाता है। उसी प्रकार अतिपरवलयिक फलनों को भी इकाई अतिपरवलय के संदर्भ में परिभाषित किया जाता है। जैसा कि इस आरेख में प्रदर्शित किया गया है। एक इकाई वृत्त में कोण (रेडियन में) उस वृत्ताकार क्षेत्र के क्षेत्रफल के दोगुने के बराबर होता है। जो वह कोण अंतरित करता है। समान अतिपरवलयिक कोण को इसी प्रकार एक अतिपरवलयिक क्षेत्र के दोगुने क्षेत्र के रूप में परिभाषित किया गया है।
माना कि , -अक्ष के बीच के क्षेत्रफल का दुगुना हो। इकाई अतिपरवलय को प्रतिच्छेद करने वाली उत्पत्ति के माध्यम से धुरी और एक किरण और प्रतिच्छेदन बिंदु के निर्देशांक के रूप में परिभाषित करें। फिर अतिपरवलय पूर्ण क्षेत्र, त्रिभुज का क्षेत्र है। जो वक्र क्षेत्र को शीर्ष से घटाता है :
जो प्रतिलोम अतिपरवलय पूर्ण कार्यों को सरल करता है।
के लिए हल करना। अतिपरवलय पूर्ण कोज्या के घातीय रूप देता है:
से एक प्राप्त होता है।
और इसके व्युत्क्रम अतिपरवलयिक कार्यों का व्युत्क्रम:
उदाहरण के लिए, अन्य अतिपरवलय पूर्ण कार्यों को अतिपरवलय पूर्ण कोसाइन और अतिपरवलय पूर्ण साइन के अनुसार परिभाषित किया गया है
गुण
स्पर्शरेखा रेखाओं के बीच के कोण को फोकी से विभाजित करती है।
एक बिंदु पर स्पर्शरेखा रेखाओं के बीच के कोण को समद्विभाजित करता है।
- प्रमाण-
माना रेखा पर बिंदु बनें, दूरी के साथ फोकस करने के लिए (आरेख देखें, अतिपरवलय की अर्ध प्रमुख धुरी है) रेखा रेखाओं के बीच के कोण का द्विभाजक है। यह प्रमाणित करने के लिए बिंदु पर स्पर्श रेखा है। कोई जाँच करता है कि कोई बिंदु ऑनलाइन ,जो इससे अलग है, अतिपरवलय पर नहीं हो सकता। अतः केवल बिंदु है। अतिपरवलय के साथ सामान्य है और इसलिए बिंदु पर स्पर्शरेखा है।
आरेख और त्रिभुज असमानता से कोई इसे पहचानता है। जिसका अर्थ है: . किन्तु यदि अतिपरवलय का एक बिंदु है। तब अंतर होना चाहिए।
समांतर तारों के मध्य बिंदु
अतिपरवलय की समानांतर जीवाओं के मध्य बिंदु केंद्र से होकर जाने वाली एक रेखा पर स्थित होते हैं (आरेख देखें)।
किसी भी जीवा के बिंदु अतिपरवलय की विभिन्न शाखाओं पर स्थित हो सकते हैं।
अतिपरवलय के लिए मिडपॉइंट्स पर गुण का प्रमाण सबसे अच्छा किया जाता है क्योंकि कोई भी अतिपरवलय , अतिपरवलय की एक सजातीय छवि है (नीचे अनुभाग देखें) और एक संबधित रूपांतरण समानांतरता और रेखा खंडों के मध्यबिंदुओं को संरक्षित करता है। इसके गुण सभी अतिपरवलयों के लिए प्रमाण है:
अतिपरवलय का दो अंक के लिए
- जीवा का मध्यबिंदु है।
- जीवा का ढलान है।
समानांतर जीवाओं के लिए ढलान स्थिर है और समानांतर जीवाओं के मध्य बिंदु रेखा पर स्थित हैं।
परिणाम: अंकों की किसी भी जोड़ी के लिए एक जीवा में अतिपरवलय के केंद्र से गुजरने वाली धुरी (निश्चित बिंदुओं का समुच्चय) के साथ एक तिरछा प्रतिबिंब उपस्थित होता है। जो बिंदुओं का आदान-प्रदान करता है और अतिपरवलय (संपूर्ण के रूप में) को स्थिर छोड़ देता है। तिरछा प्रतिबिंब रेखा के पार एक साधारण प्रतिबिंब का सामान्यीकरण है। जहां सभी बिंदु-छवि जोड़े लंबवत रेखा पर हैं।
क्योंकि तिरछा प्रतिबिंब अतिपरवलय को स्थिर छोड़ देता है। स्पर्शोन्मुख की जोड़ी भी निश्चित होती है। इसलिए मध्यबिंदु एक कोर्ड का संबंधित रेखा खंड स्पर्शोन्मुखों के बीच आधे को विभाजित करता है। इसका अर्थ यह है कि . इस गुण का उपयोग आगे के बिंदुओं अतिपरवलय के निर्माण के लिए किया जा सकता है। यदि एक बिंदु और स्पर्शोन्मुख दिए गए हैं।
यदि जीवा एक स्पर्शरेखा में डिजनरेट हो जाती है। तो स्पर्श बिंदु रेखा खंड को दो भागों में स्पर्शोन्मुख के बीच विभाजित करता है।
ऑर्थोगोनल स्पर्शरेखा - ऑर्थोप्टिक
अतिपरवलय के लिए ऑर्थोगोनल स्पर्शरेखाओं के प्रतिच्छेदन बिंदु वृत्त पर स्थित होते हैं।
इस वृत्त को दिए गए अतिपरवलय का ऑर्थोप्टिक कहा जाता है।
स्पर्शरेखाएँ अतिपरवलय की विभिन्न शाखाओं के बिंदुओं से संबंधित हो सकती हैं।
के स्थिति में ओर्थोगोनल स्पर्शरेखाओं का कोई युग्म नहीं है।
अतिपरवलय के लिए ध्रुव-ध्रुवीय संबंध
किसी भी अतिपरवलय को एक समीकरण द्वारा उपयुक्त समन्वय प्रणाली में वर्णित किया जा सकता है। एक बिंदु पर स्पर्शरेखा का समीकरण अतिपरवलय का है। यदि कोई बिंदु की अनुमति देता है। मूल से अलग एक अनगिनत बिंदु होने के लिए, तब-
- बिंदु लाइन पर अतिपरवलय के केंद्र से मैप नहीं किया जाता है।
बिंदुओं और रेखाओं के बीच यह संबंध एक आक्षेप है।
विपरीत कार्य मानचित्र
- रेखा बिंदु पर और
- रेखा बिंदु पर
एक शंकु द्वारा उत्पन्न बिंदुओं और रेखाओं के बीच इस प्रकार के संबंध को ध्रुव-ध्रुवीय संबंध या केवल 'ध्रुवीयता' कहा जाता है। ध्रुवीय रेखा ध्रुव बिंदु है। ध्रुव और ध्रुवीय देखें।
परिकलन द्वारा अतिपरवलय के ध्रुव-ध्रुवीय संबंध के निम्नलिखित गुणों की जाँच की जाती है:
- अतिपरवलय पर एक बिंदु (ध्रुव)पर के लिए ध्रुवीय इस बिंदु पर स्पर्शरेखा है। (आरेख देखें: ).
- एक पोल के लिए अतिपरवलय के बाहर अतिपरवलय के साथ इसके ध्रुवीय के प्रतिच्छेदन बिंदु दो स्पर्शरेखाओं के स्पर्शरेखा बिंदु हैं। (आरेख देखें: ).
- अतिपरवलय के भीतर एक बिंदु के लिए ध्रुवीय के पास अतिपरवलय के समान कोई बिंदु नहीं है। (आरेख देखें: ).
टिप्पणियां:
- दो ध्रुवों का प्रतिच्छेदन बिंदु (उदाहरण के लिए: ) उनके पोल के माध्यम से रेखा का पोल है (यहां: ).
- फोकस और क्रमशः और निर्देश और क्रमशः पोल और पोलर के जोड़े से संबंधित हैं।
दीर्घवृत्त और परवलय के लिए भी ध्रुव-ध्रुवीय संबंध उपस्थित हैं।
अन्य गुण
- इनमें निम्नलिखित समवर्ती रेखाएँ हैं: (1) अतिपरवलय की केन्द्र से होकर निकलने वाला एक वृत्त और अतिपरवलय के केंद्र पर केंद्रित (2) कोई भी रेखा जो अतिपरवलय के शीर्ष पर स्पर्शरेखा है और (3) अतिपरवलय के अनंत स्पर्शियों में से कोई भी स्थित होती हैं।[23][24]
- इनमें निम्नलिखित भी समवर्ती हैं: (1) वह वृत्त जो अतिपरवलय के केंद्र पर केंद्रित है और जो अतिपरवलय के शीर्ष से होकर निकलता है; (2) या तो वक्र अथवा तल को खींचने में प्रयुक्त रेखा और (3) कोई भी स्पर्शोन्मुख।[24]
चाप की लंबाई
अतिपरवलय की चाप लंबाई में प्राथमिक कार्य नहीं होता है। अतिपरवलय के ऊपरी आधे भाग को पैरामीटर किया जा सकता है।
फिर अभिन्न अंग चाप की लंबाई दे रहा है और से को के रूप में गणना की जा सकती है:
प्रतिस्थापन का उपयोग करने के बाद, इसे दूसरी प्रकार के अण्डाकार समाकल अपूर्ण अण्डाकार समाकल पैरामीटर के साथ का उपयोग करके भी प्रदर्शित किया जा सकता है:
केवल वास्तविक संख्याओं का प्रयोग करके इनका निर्माण किया जाता है।[25]
जहां पैरामीटर के साथ पहली प्रकार का अण्डाकार समाकल अपूर्ण अण्डाकार समाकल है और और गुडरमैनियन फलन है।
व्युत्पन्न वक्र
कई अन्य वक्र अतिपरवलय से उत्क्रमणीय ज्यामिति वृत्त अतिपरवलय के तथाकथित व्युत्क्रम वक्र विपरीत द्वारा प्राप्त किए जा सकते हैं। यदि व्युत्क्रम के केंद्र को अतिपरवलय के अपने केंद्र के रूप में चुना जाता है। तो विपरीत वक्र बर्नौली का लेम्निस्केट है। लेम्निस्केट एक आयताकार अतिपरवलय पर केंद्रित वृत्तों का कवर भी है और मूल बिंदु से होकर निकलता है। यदि उत्क्रमण के केंद्र को फोकस या अतिपरवलय के शीर्ष पर चुना जाता है। तो परिणामी व्युत्क्रम वक्र क्रमशः लिमाकॉन या होते हैं।
अण्डाकार निर्देशांक
कॉन्फोकल हाइपरबोलस का एक परिवार दो आयामों में अण्डाकार निर्देशांक की प्रणाली का आधार है। ये अतिपरवलय समीकरण द्वारा वर्णित हैं।
जहां फोकी x-अक्ष पर उत्पत्ति से दूरी c पर स्थित हैं और जहां θ, x-अक्ष के साथ स्पर्शोन्मुख का कोण है। इस परिवार में प्रत्येक अतिपरवलय प्रत्येक दीर्घवृत्त के लिए ओर्थोगोनल है। जो समान फोकी साझा करता है। इस ऑर्थोगोनलिटी को कार्तीय समन्वय प्रणाली w = z + 1/z के अनुरूप मानचित्र द्वारा दिखाया जा सकता है। जहां z= x + iy मूल कार्तीय निर्देशांक हैं और w=u + iv परिवर्तन के बाद के निर्देशांक हैं।
हाइपरबोलस से जुड़े अन्य ऑर्थोगोनल द्वि-आयामी समन्वय प्रणाली अन्य अनुरूप मैपिंग द्वारा प्राप्त की जा सकती हैं। उदाहरण के लिए मैपिंग w = z2 कार्तीय समन्वय प्रणाली को ओर्थोगोनल हाइपरबोलस के दो फैमली में बदलाव कर देता है।
वृत्तों के अतिपरवलय पूर्ण प्रकटन का शांकव खंड विश्लेषण
वत्त, दीर्घवृत्त, परवलय और अतिपरवलय का एक समान विवरण प्रदान करने के अतिरिक्त शंकु वर्गों को परिप्रेक्ष्य की ज्यामिति के एक प्राकृतिक मॉडल के रूप में भी समझा जा सकता है। जहां देखे जा रहे दृश्य में वृत्त होते हैं या सामान्यतः दीर्घवृत्त होते हैं। दर्शक सामान्यतः एक कैमरा या मानव आंख है और दृश्य की छवि एक छवि तल पर एक केंद्रीय प्रक्षेपण है अर्थात सभी प्रक्षेपण किरणें एक निश्चित बिंदु O केंद्र से निकलती हैं। 'लेंस प्लेन' लेंस ओ पर इमेज प्लेन के समानांतर एक प्लेन है।
एक वृत्त c की इमेज है।
- a) एक 'सर्कल', यदि सर्कल सी एक विशेष स्थिति में है। उदाहरण के लिए इमेज प्लेन और अन्य के समानांतर (स्टीरियोग्राफिक प्रोजेक्शन देखें)।
- b) एक 'दीर्घवृत्त', यदि c का लेंस तल के साथ उभयनिष्ठ कोई बिंदु नहीं है।
- c) एक 'परवलय', यदि c का लेंस तल के साथ एक बिंदु उभयनिष्ठ है और
- d) एक 'अतिपरवलय ', यदि c में लेंस तल के साथ दो बिंदु उभयनिष्ठ हैं।
(विशेष स्थान जहां वृत्त तल में बिंदु O होता है, छोड़े जाते हैं।)
इन परिणामों को समझा जा सकता है। यदि कोई पहचानता है कि प्रक्षेपण प्रक्रिया को दो चरणों में देखा जा सकता है: 1) वृत्त c और बिंदु O एक शंकु उत्पन्न करते हैं। जो 2) छवि उत्पन्न करने के लिए छवि तल द्वारा काटे जाते हैं।
किसी के लेंस प्लेन द्वारा काटे गए वृत्त के एक भाग को देखने पर जब भी कोई अतिपरवलय देखता है। दूसरी शाखा की पूर्ण अनुपस्थिति के साथ संयुक्त शाखा की बहुत अधिक भुजाओं को देखने में असमर्थता, मानव दृश्य प्रणाली के लिए हाइपरबोलस के साथ संबंध को पहचानना लगभग असंभव बना देती है।
अनुप्रयोग
धूपघड़ी
अतिपरवलय अनेक सौरघड़ी में देखे जा सकते हैं। किसी भी दिन सूर्य आकाशीय गोले पर एक चक्र में घूमता है और उसकी किरणें सूर्यघड़ी के बिंदु से टकराकर प्रकाश के एक शंकु की जानकारी प्राप्त हैं। जमीन के क्षैतिज तल के साथ इस शंकु का प्रतिच्छेदन एक शंकु खंड बनाता है। सबसे अधिक जनसंख्या वाले अक्षांशों और वर्ष के अधिकांश समय में यह शंकु खंड एक अतिपरवलय है। व्यावहारिक रूप में एक ध्रुव का कार्नर की छाया एक दिन के समय जमीन पर एक अतिपरवलय की जानकारी प्राप्त होती है (इस पथ को गिरावट रेखा कहा जाता है)। इस अतिपरवलय का आकार भौगोलिक अक्षांश और वर्ष के समय के साथ बदलता रहता है क्योंकि ये कारक क्षितिज के सापेक्ष सूर्य की किरणों के शंकु को प्रभावित करते हैं। एक दिए गए स्थान पर एक पूरे वर्ष के लिए इस प्रकार के हाइपरबोलस के संग्रह को यूनानियों द्वारा पेकिन्तुॉन कहा जाता था क्योंकि यह एक डबल-ब्लेडेड कुल्हाड़ी जैसा दिखता है।
मल्टीलेटरेशन
अतिपरवलय बहुपक्षीय समस्याओं को हल करने का आधार है। दिए गए बिंदुओं की दूरी में अंतर से एक बिंदु का पता लगाने का कार्य या समतुल्य, बिंदु और दिए गए बिंदुओं के बीच सिंक्रनाइज़ संकेतों के आगमन के समय में अंतर होता है। नेविगेशन में ऐसी समस्याएं महत्वपूर्ण हैं, मुख्यतः पानी पर। एक जहाज लोरान या जीपीएस ट्रांसमीटर से सिग्नल के आगमन के समय में अंतर से अपनी स्थिति का पता लगा सकता है। इसके विपरीत एक होमिंग बीकन या कोई भी ट्रांसमीटर दो अलग-अलग प्राप्त करने वाले स्टेशनों पर इसके संकेतों के आगमन के समय की तुलना करके स्थित हो सकता है। ऐसी विधियों का उपयोग वस्तुओं और लोगों को ट्रैक करने के लिए किया जा सकता है। विशेष रूप से एक बिंदु की संभावित स्थितियों का समुच्चय जिसमें दो दिए गए बिंदुओं से 2a की दूरी का अंतर होता है, वर्टेक्स विभाजन 2a का एक अतिपरवलय होता है। जिसका केंद्र दो दिए गए बिंदु होते हैं।
एक कण के बाद पथ
शास्त्रीय केपलर समस्या में किसी भी कण द्वारा पीछा किया जाने वाला मार्ग एक शंकु खंड है। विशेष रूप से यदि कण की कुल ऊर्जा E शून्य से अधिक है (अर्थात, यदि कण अनबाउंड है), ऐसे कण का पथ एक अतिपरवलय है। यह गुण उच्च-ऊर्जा कणों के प्रकीर्णन द्वारा परमाणु और उप-परमाणु बलों का अध्ययन करने में उपयोगी है। उदाहरण के लिए गीजर-मार्सडेन प्रयोग ने सोने के परमाणुओं से अल्फा कणों के बिखरने की जांच करके एक परमाणु नाभिक के अस्तित्व का प्रदर्शन किया। यदि लघु-श्रेणी के नाभिकीय अन्योन्यक्रियाओं की उपेक्षा की जाती है। तो परमाणु नाभिक और अल्फा कण केवल प्रतिकारक कूलम्ब के नियम द्वारा परस्पर क्रिया करते हैं। जो केप्लर समस्या के लिए व्युत्क्रम वर्ग नियम की आवश्यकता को पूरा करता है।
कोरटेवेग–डी व्रीस समीकरण
हाइपरबोलिक ट्रिग फलन कॉर्टेवेग-डी वेरी समीकरण के एक समाधान के रूप में प्रकट होता है। जो एक सुरंग में सॉलिटॉन तरंग की गति का वर्णन करता है।
तिरछा कोण
जैसा कि पेरगा के एपोलोनियस द्वारा पहले दिखाया गया है। एक अतिपरवलय का उपयोग कोण झुकाने के लिए किया जा सकता है। जो कि ज्यामिति की एक अच्छी प्रकार से अध्ययन की गई समस्या है। एक कोण दिया हुआ है। पहले इसके शीर्ष O पर केन्द्रित एक वृत्त खींचिए। जो कोण की भुजाओं को बिंदुओं A और B पर प्रतिच्छेद करता है। इसके बाद अंत बिंदु A और B और इसके लम्ब समद्विभाजक के साथ रेखा खंड खींचिए। . सनकीपन (गणित) के एक अतिपरवलय का निर्माण करें। e=2 साथ में डायरेक्ट्रिक्स के रूप में (शंक्वाकार खंड) और B फोकस के रूप में P को वृत्त के साथ अतिपरवलय का प्रतिच्छेदन (ऊपरी) होने दें। कोण POB, कोण AOB को समत्रिभाजित करता है।
इसे सिद्ध करने के लिए रेखाखंड OP को रेखा के परितः परावर्तित कीजिए। बिंदु P' को P की छवि के रूप में प्राप्त करना है। खंड AP' में प्रतिबिंब के कारण खंड BP के समान लंबाई होती है। जबकि खंड PP' की लंबाई खंड BP के समान होती है क्योंकि अतिपरवलय की विलक्षणता होती है। चूँकि OA, OP', OP और OB सभी एक ही वृत्त की त्रिज्याएँ हैं (और इसलिए, उनकी लंबाई समान है), त्रिभुज OAP', OPP' और OPB सभी सर्वांगसम हैं। इसलिए कोण को समत्रिभाजित किया गया है क्योंकि 3×POB = AOB है।[26]
कुशल पोर्टफोलियो फ्रंटियर
आधुनिक पोर्टफोलियो सिद्धांत में बिना किसी खतरा-मुक्त गुण के कुशल सीमांत माध्य विचरण दक्षता का नियम माध्य-भिन्नता कुशल पोर्टफोलियो (कुशल सीमा कहा जाता है) पोर्टफोलियो के साथ खींची गई अतिपरवलय की पूर्व-उद्घाटन शाखा का ऊपर का आधा भाग है। रिटर्न का मानक विचलन क्षैतिज रूप से प्लॉट किया गया है और इसका अपेक्षित मूल्य लंबवत प्लॉट किया गया है। इस सिद्धांत के अनुसार, सभी तर्कसंगत निवेशक इस स्थान पर किसी बिंदु की विशेषता वाले पोर्टफोलियो का चयन करेंगे।
जैव रसायन
जैव रसायन और औषधियों विज्ञान में हिल समीकरण (जैव रसायन) और हिल समीकरण (जैव रसायन) हिल-लैंगमुइर समीकरण क्रमशः जैविक उत्तेजना-प्रतिक्रिया मॉडल और प्रोटीन-लिगैंड परिसरों के गठन को लिगैंड एकाग्रता के कार्यों के रूप में वर्णित करते हैं। वे दोनों आयताकार अतिपरवलय हैं।
चतुष्कोणों के समतल वर्गों के रूप में हाइपरबोलस
हाइपरबोलस निम्नलिखित चतुष्कोणों के समतल खंडों के रूप में दिखाई देते हैं:
- अण्डाकार शंकु
- अतिपरवलय पूर्ण सिलेंडर
- अतिपरवलय पूर्ण परवलयज
- एक शीट का हाइपरबोलॉइड
- दो शीटों का हाइपरबोलॉइड
यह भी देखें
अन्य शांकव खंड
- घेरा
- दीर्घवृत्त
- परबोला
- पतित शंकु
अन्य संबंधित विषय
- अण्डाकार निर्देशांक, दीर्घवृत्त और हाइपरबोलस के परिवारों पर आधारित एक ऑर्थोगोनल समन्वय प्रणाली।
- अतिपरवलय पूर्ण विकास
- अतिपरवलय पूर्ण आंशिक अंतर समीकरण
- अतिपरवलय पूर्ण क्षेत्र
- हाइपरबोलाइड संरचना
- अतिपरवलय पूर्ण प्रक्षेपवक्र
- अतिपरवलयज
- गुणन
- कुल्हाड़ियों का घूमना
- कुल्हाड़ियों का अनुवाद
- यूनिट हाइपरबोला
टिप्पणियाँ
- ↑ Oakley (1944, p. 17)
- ↑ Oakley (1944, p. 17)
- ↑ Heath, Sir Thomas Little (1896), "Chapter I. The discovery of conic sections. Menaechmus", Apollonius of Perga: Treatise on Conic Sections with Introductions Including an Essay on Earlier History on the Subject, Cambridge University Press, pp. xvii–xxx.
- ↑ Boyer, Carl B.; Merzbach, Uta C. (2011), A History of Mathematics, Wiley, p. 73, ISBN 9780470630563,
It was Apollonius (possibly following up a suggestion of Archimedes) who introduced the names "ellipse" and "hyperbola" in connection with these curves.
- ↑ Eves, Howard (1963), A Survey of Geometry (Vol. One), Allyn and Bacon, pp. 30–31
- ↑ Protter & Morrey (1970, pp. 308–310)
- ↑ Protter & Morrey (1970, p. 310)
- ↑ Apostol, Tom M.; Mnatsakanian, Mamikon A. (2012), New Horizons in Geometry, The Dolciani Mathematical Expositions #47, The Mathematical Association of America, p. 251, ISBN 978-0-88385-354-2
- ↑ The German term for this circle is Leitkreis which can be translated as "Director circle", but that term has a different meaning in the English literature (see Director circle).
- ↑ Frans van Schooten: Mathematische Oeffeningen, Leyden, 1659, p. 327
- ↑ E. Hartmann: Lecture Note 'Planar Circle Geometries', an Introduction to Möbius-, Laguerre- and Minkowski Planes, p. 93
- ↑ W. Benz: Vorlesungen über Geomerie der Algebren, Springer (1973)
- ↑ Lecture Note Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes, S. 33, (PDF; 757 kB)
- ↑ Lecture Note Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes, S. 32, (PDF; 757 kB)
- ↑ Fanchi, John R. (2006), Math refresher for scientists and engineers, John Wiley and Sons, pp. 44–45, ISBN 0-471-75715-2, Section 3.2, page 45
- ↑ Korn, Granino A. and Korn, Theresa M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, Dover Publ., second edition, 2000: p. 40.
- ↑ Protter & Morrey (1970, p. 310)
- ↑ Protter & Morrey (1970, p. 310)
- ↑ Protter & Morrey (1970, p. 310)
- ↑ Protter & Morrey (1970, pp. APP-29–APP-30)
- ↑ 21.0 21.1 Mitchell, Douglas W., "A property of hyperbolas and their asymptotes", Mathematical Gazette 96, July 2012, 299–301.
- ↑ J. W. Downs, Practical Conic Sections, Dover Publ., 2003 (orig. 1993): p. 26.
- ↑ "अतिपरवलय". Mathafou.free.fr. Archived from the original on 4 March 2016. Retrieved 26 August 2018.
- ↑ 24.0 24.1 "हाइपरबोला के गुण". Archived from the original on 2017-02-02. Retrieved 2011-06-22.
- ↑ Carlson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
- ↑ This construction is due to Pappus of Alexandria (circa 300 A.D.) and the proof comes from Kazarinoff (1970, pg. 62) .
संदर्भ
- Kazarinoff, Nicholas D. (2003), Ruler and the Round, Mineola, N.Y.: Dover, ISBN 0-486-42515-0
- Oakley, C. O., Ph.D. (1944), An Outline of the Calculus, New York: Barnes & Noble
{{citation}}
: CS1 maint: multiple names: authors list (link) - Protter, Murray H.; Morrey, Charles B. Jr. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042
इस पेज में लापता आंतरिक लिंक की सूची
- डबल कोन (ज्यामिति)
- समतल ज्यामिति)
- अंक शास्त्र
- अंडाकार
- गुणात्मक प्रतिलोम
- घेरा
- क्षेत्र (गणित)
- एस्केप वेलोसिटी
- गुरुत्वाकर्षण सहायता
- अनंतस्पर्शी
- उप - परमाणविक कण
- रदरफोर्ड बिखराव
- समायोजन ध्रुव
- सापेक्षता का सिद्धांत
- फोकस (ज्यामिति)
- विलक्षणता (गणित)
- डायरेक्ट्रिक्स (शंक्वाकार खंड)
- जायरोवेक्टर स्पेस
- गैर-यूक्लिडियन ज्यामिति
- यूनानी भाषा
- घन को दोगुना करना
- पेरगा का एपोलोनियस
- बिंदुओं का ठिकाना
- चक्र उलटा
- थेल्स का प्रमेय
- डंडेलिन गोले
- पेंसिल (गणित)
- अंकित कोण
- सिद्ध
- पारस्परिकता (ज्यामिति)
- लिफाफा (गणित)
- ठिकाना (गणित)
- कानूनी फॉर्म
- समरूपता (ज्यामिति)
- हेस्से सामान्य रूप
- वक्रता त्रिज्या
- निहीत भेदभाव
- इकाई अतिपरवलय
- अतिपरवलय पूर्ण क्षेत्र
- यूनिट सर्कल
- गोलाकार क्षेत्र
- त्रिकोणमितीय समारोह
- अतिपरवलय पूर्ण कोण
- उलटा अतिपरवलय पूर्ण कार्य
- असमानित त्रिकोण
- द्विभाजन
- उलटा काम करना
- लेमनिसकेट या बर्नौली
- सोना
- औसत विचरण दक्षता
- जीव रसायन
- द्विघात
बाहरी कड़ियाँ
- "Hyperbola", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Apollonius' Derivation of the Hyperbola at Convergence
- Frans van Schooten: Mathematische Oeffeningen, 1659
- Weisstein, Eric W. "अतिपरवलय". MathWorld.
श्रेणी:शंक्वाकार खंड श्रेणी: विश्लेषणात्मक ज्यामिति श्रेणी: बीजगणितीय वक्र