विनम्र संख्या
संख्या सिद्धांत में, एक विनम्र संख्या एक सकारात्मक पूर्णांक है जिसे दो या दो से अधिक निरंतर सकारात्मक पूर्णांकों के योग के रूप में लिखा जा सकता है। एक धनात्मक पूर्णांक जो विनम्र नहीं है उसे असभ्य कहा जाता है।[1][2] अशिष्ट संख्याएं बिल्कुल दो की शक्ति हैं, और विनम्र संख्याएं प्राकृतिक संख्याएं हैं जो दो की शक्तियां नहीं हैं।
विनम्र संख्याओं को सीढ़ी संख्याएं भी कहा जाता है क्योंकि युवा आरेख जो ग्राफिक रूप से एक विनम्र संख्या के विभाजन (संख्या सिद्धांत) को निरंतर पूर्णांकों में दर्शाते हैं (यंग_झाँकी # इन आरेखों को चित्रित करने के आरेखों में) सीढ़ियों के समान हैं।[3][4][5] यदि योग में सभी संख्याएँ सख्ती से एक से अधिक हैं, तो इस तरह से बनने वाली संख्याओं को समलम्बाकार संख्याएँ भी कहा जाता है क्योंकि वे एक समलम्बाकार में व्यवस्थित बिंदुओं के पैटर्न का प्रतिनिधित्व करती हैं।[6][7][8][9][10][11][12] क्रमागत पूर्णांकों के योग के रूप में संख्याओं को निरूपित करने की समस्या और इस प्रकार के निरूपणों की संख्या की गणना करने की समस्या का अध्ययन जेम्स जोसेफ सिल्वेस्टर ने किया है,[13] राजमिस्त्री,[14][15] विलियम जे लेवेक,[16] और कई अन्य हाल के लेखक।[1][2][17][18][19][20][21][22][23] विनम्र संख्याएँ रेनहार्ड्ट बहुभुजों की भुजाओं की संभावित संख्या का वर्णन करती हैं।[24]
उदाहरण और लक्षण वर्णन
पहले कुछ विनम्र संख्याएँ हैं
- 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 , 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ... (sequence A138591 in the OEIS).
असभ्य संख्याएं बिल्कुल दो की शक्ति हैं।[13]लैम्बेक-मोजर प्रमेय से यह पता चलता है कि nवीं विनम्र संख्या f(n + 1) है, जहां
विनम्रता
एक सकारात्मक संख्या की शिष्टता को उन विधियों की संख्या के रूप में परिभाषित किया जाता है जिन्हें निरंतर पूर्णांकों के योग के रूप में व्यक्त किया जा सकता है। प्रत्येक x के लिए, x की शिष्टता x के विषम संख्या विभाजकों की संख्या के समान है जो एक से अधिक हैं।[13] अंक 1, 2, 3,... की शालीनता है
उदाहरण के लिए, 9 की शिष्टता 2 है क्योंकि इसमें दो विषम विभाजक हैं, 3 और 9, और दो विनम्र निरूपण
- 9 = 2 + 3 + 4 = 4 + 5;
15 की शालीनता 3 है क्योंकि इसमें तीन विषम विभाजक हैं, 3, 5 और 15, और (जैसा कि क्राइबेज खिलाड़ियों से परिचित है)[25] तीन विनम्र अभ्यावेदन
- 15 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5 = 7 + 8।
संख्या को उसके अभाज्य गुणनखंडों में विघटित करके, 2 से अधिक सभी अभाज्य गुणनखंडों की घात लेकर, उन सभी में 1 जोड़कर, इस प्रकार प्राप्त संख्याओं को आपस में गुणा करके और 1 घटाकर धनात्मक संख्या की शालीनता की गणना करने का एक आसान विधि। उदाहरण के लिए 90 में विनम्रता 5 है क्योंकि ; 3 और 5 की शक्तियाँ क्रमशः 2 और 1 हैं, और इस विधि को प्रारंभ करना .
== विषम भाजक == से विनम्र अभ्यावेदन का निर्माण विषम भाजक और विनम्र अभ्यावेदन के मध्य संबंध देखने के लिए, मान लें कि एक संख्या x में विषम भाजक y > 1 है। पुनः x/y पर केंद्रित y क्रमागत पूर्णांकों (ताकि उनका औसत मान x/y हो) का योग x हो:
इस राशि के कुछ पद शून्य या ऋणात्मक हो सकते हैं। यद्यपि, यदि कोई शब्द शून्य है तो इसे छोड़ा जा सकता है और सकारात्मक शब्दों को रद्द करने के लिए किसी भी नकारात्मक शब्द का उपयोग किया जा सकता है, जिससे x के लिए एक विनम्र प्रतिनिधित्व हो सकता है। (आवश्यकता है कि y > 1 इस आवश्यकता के अनुरूप है कि एक विनम्र प्रतिनिधित्व में एक से अधिक शब्द हैं; y = 1 के लिए समान निर्माण प्रारंभ करने से केवल तुच्छ एक-शब्द प्रतिनिधित्व x = x हो जाएगा।) उदाहरण के लिए, विनम्र संख्या x = 14 में एक गैर-तुच्छ विषम भाजक है, 7. इसलिए यह 14/7 = 2 पर केंद्रित निरंतर7 संख्याओं का योग है:
- 14 = (2 − 3) + (2 − 2) + (2 − 1) + 2 + (2 + 1) + (2 + 2) + (2 + 3).
पहला पद, -1, उपरांत के +1 को रद्द करता है, और दूसरा पद, शून्य, छोड़ा जा सकता है, जिससे विनम्र प्रतिनिधित्व होता है
- 14 = 2 + (2 + 1) + (2 + 2) + (2 + 3) = 2 + 3 + 4 + 5।
इसके विपरीत, इस निर्माण से x का हर विनम्र प्रतिनिधित्व किया जा सकता है। यदि किसी निरूपण में पदों की विषम संख्या है, तो x/y मध्य पद है, जबकि यदि इसमें पदों की समानता (गणित) संख्या है और इसका न्यूनतम मान m है तो इसे एक अद्वितीय तरीके से लंबे अनुक्रम के साथ बढ़ाया जा सकता है। 2m − 1 संख्या −(m − 1), −(m − 2), ..., −1, 0, 1, ..., m − 2, m सम्मिलित करके समान योग और विषम संख्या − 1. इस विस्तार के उपरांत, पुनः से, x/y मध्य पद है। इस निर्माण के द्वारा, एक संख्या के विनम्र निरूपण और एक से अधिक विषम विभाजकों को एक आपत्ति में रखा जा सकता है | एक-से-एक पत्राचार, विनम्र संख्या और शिष्टता के लक्षण वर्णन का एक विशेषण प्रमाण देता है।[13][26] अधिक सामान्यतः, एक ही विचार दो-से-एक पत्राचार देता है, एक ओर, निरंतर पूर्णांकों के योग के रूप में प्रतिनिधित्व (शून्य, ऋणात्मक संख्याओं और एकल-अवधि के प्रतिनिधित्व की अनुमति देता है) और दूसरी ओर विषम विभाजक (सहित) 1).[15]
इस परिणाम के एक अन्य सामान्यीकरण में कहा गया है कि, किसी भी n के लिए, n के विभाजनों की संख्या विषम संख्याओं में k विशिष्ट मानों के समान होती है, n के विभाजनों की संख्या भिन्न-भिन्न संख्याओं में होती है, जिनमें निरंतरसंख्याओं के k अधिकतम रन होते हैं।[13][27][28] यहां एक रन एक या एक से अधिक निरंतरमान हैं जैसे अगले बड़े और अगले छोटे निरंतरमान विभाजन का हिस्सा नहीं हैं; उदाहरण के लिए विभाजन 10 = 1 + 4 + 5 में दो रन हैं, 1 और 4 + 5। एक विनम्र प्रतिनिधित्व में एक रन होता है, और एक मान d वाला विभाजन उत्पाद d ⋅ (n/d) के रूप में n के गुणनखंड के समान होता है, इसलिए इस परिणाम का विशेष स्थिति k = 1 पुनः से विनम्र प्रतिनिधित्व के मध्य समानता बताता है और विषम कारक (इस स्थिति में तुच्छ प्रतिनिधित्व n = n और तुच्छ विषम कारक 1 सहित)।
चतुर्भुज संख्या
यदि एक विनम्र निरूपण 1 से शुरू होता है, तो इस प्रकार प्रस्तुत की गई संख्या एक त्रिभुजाकार संख्या है
अन्यथा, यह दो गैर-निरंतरत्रिकोणीय संख्याओं का अंतर है
इस दूसरे स्थिति को ट्रेपोजॉइडल नंबर कहा जाता है।[12] कोई विनम्र संख्याओं पर भी विचार कर सकता है जो ट्रैपोज़ाइडल नहीं हैं। केवल ऐसी संख्याएँ त्रिकोणीय संख्याएँ हैं जिनमें केवल एक गैर-तुच्छ विषम भाजक है, क्योंकि उन संख्याओं के लिए, पहले वर्णित आक्षेप के अनुसार, विषम भाजक त्रिकोणीय प्रतिनिधित्व से मेल खाता है और कोई अन्य विनम्र प्रतिनिधित्व नहीं हो सकता है। इस प्रकार, गैर-ट्रेपोज़ाइडल विनम्र संख्या में एक अजीब प्राइम द्वारा दो गुणा की शक्ति का रूप होना चाहिए। जैसा कि जोन्स और लॉर्ड निरीक्षण करते हैं,[12]इस फॉर्म के साथ बिल्कुल दो प्रकार की त्रिकोणीय संख्याएँ हैं:
- सम पूर्ण संख्या 2n − 1(2n − 1) Mersenne prime 2 के गुणनफल से बनता हैn − 1 दो की आधी निकटतम शक्ति के साथ, और
- उत्पाद 2n − 1(2n + 1) फर्मेट प्राइम 2 काn + 1 दो की निकटतम आधी शक्ति के साथ।
(sequence A068195 in the OEIS). उदाहरण के लिए, पूर्ण संख्या 28 = 23 − 1(23 − 1) और संख्या 136 = 24 − 1(24 + 1) दोनों इस प्रकार के विनम्र नंबर हैं। यह अनुमान लगाया गया है कि असीम रूप से कई Mersenne primes हैं, इस स्थिति में इस प्रकार की असीम रूप से कई विनम्र संख्याएँ भी हैं।
संदर्भ
- ↑ 1.0 1.1 Adams, Ken (March 1993), "How polite is x?", The Mathematical Gazette, 77 (478): 79–80, doi:10.2307/3619263, JSTOR 3619263, S2CID 171530924.
- ↑ 2.0 2.1 Griggs, Terry S. (December 1991), "Impolite Numbers", The Mathematical Gazette, 75 (474): 442–443, doi:10.2307/3618630, JSTOR 3618630, S2CID 171681914.
- ↑ Mason, John; Burton, Leone; Stacey, Kaye (1982), Thinking Mathematically, Addison-Wesley, ISBN 978-0-201-10238-3.
- ↑ Stacey, K.; Groves, S. (1985), Strategies for Problem Solving, Melbourne: Latitude.
- ↑ Stacey, K.; Scott, N. (2000), "Orientation to deep structure when trying examples: a key to successful problem solving", in Carillo, J.; Contreras, L. C. (eds.), Resolucion de Problemas en los Albores del Siglo XXI: Una vision Internacional desde Multiples Perspectivas y Niveles Educativos (PDF), Huelva, Spain: Hergue, pp. 119–147, archived from the original (PDF) on 2008-07-26.
- ↑ Gamer, Carlton; Roeder, David W.; Watkins, John J. (1985), "Trapezoidal numbers", Mathematics Magazine, 58 (2): 108–110, doi:10.2307/2689901, JSTOR 2689901.
- ↑ Jean, Charles-É. (March 1991), "Les nombres trapézoïdaux" (French), Bulletin de l'AMQ: 6–11.
- ↑ Haggard, Paul W.; Morales, Kelly L. (1993), "Discovering relationships and patterns by exploring trapezoidal numbers", International Journal of Mathematical Education in Science and Technology, 24 (1): 85–90, doi:10.1080/0020739930240111.
- ↑ Feinberg-McBrian, Carol (1996), "The case of trapezoidal numbers", Mathematics Teacher, 89 (1): 16–24, doi:10.5951/MT.89.1.0016.
- ↑ Smith, Jim (1997), "Trapezoidal numbers", Mathematics in School, 5: 42.
- ↑ Verhoeff, T. (1999), "Rectangular and trapezoidal arrangements", Journal of Integer Sequences, 2: 16, Bibcode:1999JIntS...2...16V, Article 99.1.6.
- ↑ 12.0 12.1 12.2 Jones, Chris; Lord, Nick (1999), "Characterising non-trapezoidal numbers", The Mathematical Gazette, 83 (497): 262–263, doi:10.2307/3619053, JSTOR 3619053, S2CID 125545112.
- ↑ 13.0 13.1 13.2 13.3 13.4 Sylvester, J. J.; Franklin, F (1882), "A constructive theory of partitions, arranged in three acts, an interact and an exodion", American Journal of Mathematics, 5 (1): 251–330, doi:10.2307/2369545, JSTOR 2369545. In The collected mathematical papers of James Joseph Sylvester (December 1904), H. F. Baker, ed. Sylvester defines the class of a partition into distinct integers as the number of blocks of consecutive integers in the partition, so in his notation a polite partition is of first class.
- ↑ Mason, T. E. (1911), "On the representations of a number as a sum of consecutive integers", Proceedings of the Indiana Academy of Science: 273–274.
- ↑ 15.0 15.1 Mason, Thomas E. (1912), "On the representation of an integer as the sum of consecutive integers", American Mathematical Monthly, 19 (3): 46–50, doi:10.2307/2972423, JSTOR 2972423, MR 1517654.
- ↑ Leveque, W. J. (1950), "On representations as a sum of consecutive integers", Canadian Journal of Mathematics, 2: 399–405, doi:10.4153/CJM-1950-036-3, MR 0038368, S2CID 124093945,
- ↑ Pong, Wai Yan (2007), "Sums of consecutive integers", College Math. J., 38 (2): 119–123, arXiv:math/0701149, Bibcode:2007math......1149P, doi:10.1080/07468342.2007.11922226, MR 2293915, S2CID 14169613.
- ↑ Britt, Michael J. C.; Fradin, Lillie; Philips, Kathy; Feldman, Dima; Cooper, Leon N. (2005), "On sums of consecutive integers", Quart. Appl. Math., 63 (4): 791–792, doi:10.1090/S0033-569X-05-00991-1, MR 2187932.
- ↑ Frenzen, C. L. (1997), "Proof without words: sums of consecutive positive integers", Math. Mag., 70 (4): 294, doi:10.1080/0025570X.1997.11996560, JSTOR 2690871, MR 1573264.
- ↑ Guy, Robert (1982), "Sums of consecutive integers" (PDF), Fibonacci Quarterly, 20 (1): 36–38, Zbl 0475.10014.
- ↑ Apostol, Tom M. (2003), "Sums of consecutive positive integers", The Mathematical Gazette, 87 (508): 98–101, doi:10.1017/S002555720017216X, JSTOR 3620570, S2CID 125202845.
- ↑ Prielipp, Robert W.; Kuenzi, Norbert J. (1975), "Sums of consecutive positive integers", Mathematics Teacher, 68 (1): 18–21, doi:10.5951/MT.68.1.0018.
- ↑ Parker, John (1998), "Sums of consecutive integers", Mathematics in School, 27 (2): 8–11.
- ↑ Mossinghoff, Michael J. (2011), "Enumerating isodiametric and isoperimetric polygons", Journal of Combinatorial Theory, Series A, 118 (6): 1801–1815, doi:10.1016/j.jcta.2011.03.004, MR 2793611
- ↑ Graham, Ronald; Knuth, Donald; Patashnik, Oren (1988), "Problem 2.30", Concrete Mathematics, Addison-Wesley, p. 65, ISBN 978-0-201-14236-5.
- ↑ Vaderlind, Paul; Guy, Richard K.; Larson, Loren C. (2002), The inquisitive problem solver, Mathematical Association of America, pp. 205–206, ISBN 978-0-88385-806-6.
- ↑ Andrews, G. E. (1966), "On generalizations of Euler's partition theorem", Michigan Mathematical Journal, 13 (4): 491–498, doi:10.1307/mmj/1028999609, MR 0202617.
- ↑ Ramamani, V.; Venkatachaliengar, K. (1972), "On a partition theorem of Sylvester", The Michigan Mathematical Journal, 19 (2): 137–140, doi:10.1307/mmj/1029000844, MR 0304323.
बाहरी संबंध
- Polite Numbers, NRICH, University of Cambridge, December 2002
- An Introduction to Runsums, R. Knott.
- Is there any pattern to the set of trapezoidal numbers? Intellectualism.org question of the day, October 2, 2003. With a diagram showing trapezoidal numbers color-coded by the number of terms in their expansions.