आइसोमेट्री समूह

From Vigyanwiki
Revision as of 16:55, 1 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, मापीय स्थान का आइसोमेट्री समूह मापीय स्थान से स्वयं पर सभी द्विभाजित आइसोमेट्री (अर्थात द्विभाजित, दूरी-संरक्षित प्रतिचित्र) का समुच्चय (गणित) है, समूह (गणित) संचालन के रूप में फलन संरचना होती है। इसका तत्समक तत्व तत्समक फलन है।[1] आइसोमेट्री समूह के तत्वों को कभी-कभी स्थान की गति (ज्यामिति) कहा जाता है।

मापीय स्थान का प्रत्येक आइसोमेट्री समूह आइसोमेट्री का उपसमूह है। यह अधिकतर स्थितियों में स्थान में वस्तुओं/आंकड़ों की समरूपता के संभावित समुच्चय या स्थान पर परिभाषित फलनों का प्रतिनिधित्व करते है। समरूपता समूह देखें।

असतत आइसोमेट्री समूह एक आइसोमेट्री समूह है जैसे कि स्थान के हर बिंदु के लिए आइसोमेट्री के अंतर्गत बिंदु के प्रतिरूपों का समुच्चय असतत समुच्चय है।

छद्म-यूक्लिडियन स्थान में मापीय को समदैशिक द्विघात रूप से बदल दिया जाता है; इस रूप को संरक्षित करने वाले परिवर्तनों को कभी-कभी समदूरीकता कहा जाता है, और उनके संग्रह को छद्म-यूक्लिडियन स्थान के आइसोमेट्री समूह बनाने के लिए कहा जाता है।

उदाहरण

  • एक विषमबाहु त्रिभुज के बिंदुओं से युक्त एक मापीय स्थान के उप-स्थान का आइसोमेट्री समूह सतहीय समूह है। समद्विबाहु त्रिभुज के लिए एक समान स्थान क्रम दो, C2 का चक्रीय समूह है। एक समबाहु त्रिभुज के लिए समान स्थान D3 है क्रम 6 का द्वितल समूह
  • द्वि-आयामी गोले का आइसोमेट्री समूह लांबिक समूह O (3) है।[2]
  • एन-आयामी यूक्लिडियन स्थान का आइसोमेट्री समूह यूक्लिडियन समूह ई (एन) है।[3]
  • अतिपरवलयिक तल के पोंकारे डिस्क मॉडल का आइसोमेट्री समूह प्रक्षेपी विशेष एकात्मक समूह एसयू (1,1) है।
  • अतिपरवलयिक तल के पोंकारे अर्ध-तल मॉडल का सममिति समूह पीएसएल (2,R) है।
  • मिन्कोव्स्की स्थान का आइसोमेट्री समूह पोंकारे समूह है।[4]
  • रिमेंनियन सममित स्थान महत्वपूर्ण स्थिति हैं जहां आइसोमेट्री समूह एक लाइ समूह है।

यह भी देखें

संदर्भ

  1. Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001), A course in metric geometry, Graduate Studies in Mathematics, vol. 33, Providence, RI: American Mathematical Society, p. 75, ISBN 0-8218-2129-6, MR 1835418.
  2. Berger, Marcel (1987), Geometry. II, Universitext, Berlin: Springer-Verlag, p. 281, doi:10.1007/978-3-540-93816-3, ISBN 3-540-17015-4, MR 0882916.
  3. Olver, Peter J. (1999), Classical invariant theory, London Mathematical Society Student Texts, vol. 44, Cambridge: Cambridge University Press, p. 53, doi:10.1017/CBO9780511623660, ISBN 0-521-55821-2, MR 1694364.
  4. Müller-Kirsten, Harald J. W.; Wiedemann, Armin (2010), Introduction to supersymmetry, World Scientific Lecture Notes in Physics, vol. 80 (2nd ed.), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., p. 22, doi:10.1142/7594, ISBN 978-981-4293-42-6, MR 2681020.