जेट (कण भौतिकी)

From Vigyanwiki
Revision as of 13:17, 14 April 2023 by alpha>Aagman
शीर्ष क्वार्क और एंटी टॉप क्वार्क की जोड़ी जेट में क्षय हो रही है, टेवाट्रॉन में फर्मिलैब संसूचक में कोलाइडर संसूचक में कण ट्रैक्स और अन्य फर्मों के संमिलित संग्रह के रूप में दिखाई दे रही है।

एक जेट एक कण भौतिकी या भारी आयन प्रयोग में क्वार्क या ग्लूऑन के हैड्रोनाइजेशन द्वारा उत्पादित हैड्रोन और अन्य कणों का एक संकीर्ण शंकु है। क्वांटम क्रोमोगतिकी (क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देता है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाता है। कारावास का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को एक जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों का एक संकीर्ण जेट बनता है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को कण संसूचक में मापा जाता है और अध्ययन किया जाता है।

एक जेट परिभाषा में जेट आल्गोरिदम और एक पुनर्संयोजन योजना सम्मिलित है।[1] पूर्व परिभाषित करता है कि कैसे कुछ इनपुट, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण(कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा (जेट अक्ष) को क्षेपण(कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक कैलोरीमीटर (कण भौतिकी) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि , अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। एक ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देता है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, एंटी-kT आल्गोरिदम, kT आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें एक जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है।


आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए एक प्राकृतिक जांच है, और इसके चरण को इंगित करता है। जब क्यूसीडी पदार्थ क्वार्क ग्लूऑन प्लाज्मा में एक चरण विनिमय से गुजरता है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है (तीव्रता को कम करना)।

जेट विश्लेषण तकनीकों के उदाहरण हैं:

  • जेट सहसंबंध
  • फ्लेवर टैगिंग (जैसे, बी-टैगिंग)
  • जेट सबस्ट्रक्चर।

लुंड स्ट्रिंग मॉडल जेट विखंडन मॉडल का एक उदाहरण है।

जेट उत्पादन

क्यूसीडी हार्ड स्कैटरिंग प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में पार्टन (कण भौतिकी) कहलाते हैं।

जेट के एक निश्चित समूह को बनाने की संभावना को जेट प्रोडक्शन क्रॉस सेक्शन द्वारा वर्णित किया गया है, जो पार्टन वितरण समारोह द्वारा भारित प्राथमिक पर्टुरेटिव क्यूसीडी क्वार्क, एंटीक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे लगातार जेट जोड़ी उत्पादन प्रक्रिया के लिए, दो कण बिखरने, एक हैड्रोनिक टक्कर में जेट उत्पादन क्रॉस सेक्शन द्वारा दिया जाता है

साथ

  • एक्स, क्यू2: अनुदैर्ध्य संवेग अंश और संवेग स्थानांतरण
  • : प्रतिक्रिया ij → k के लिए पर्टुरेटिव क्यूसीडी क्रॉस सेक्शन
  • : बीम ए में कण प्रजातियों को खोजने के लिए पार्टन वितरण समारोह।

प्राथमिक क्रॉस सेक्शन उदा. पेस्किन एंड श्रोएडर (1995), खंड 17.4 में गड़बड़ी सिद्धांत के अग्रणी क्रम की गणना। पार्टन डिस्ट्रीब्यूशन फंक्शन के विभिन्न पैरामीटराइजेशन की समीक्षा और मोंटे कार्लो इवेंट जेनरेटर के संदर्भ में गणना की चर्चा टी. सोजोस्ट्रैंड एट अल में की गई है। (2003), खंड 7.4.1।

जेट विखंडन

पर्टुरबेटिव क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, लेकिन मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन शॉवर से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मुलायम क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए शब्द विखंडन और हैड्रोनाइजेशन प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है।

जैसा कि हार्ड स्कैटर में उत्पन्न पार्टन इंटरेक्शन से बाहर निकलता है, इसके पृथक्करण के साथ मजबूत युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाता है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में उथला-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में विकिरित होगा
q

q
जोड़े वगैरह, प्रत्येक नए पार्टन के साथ अपने माता-पिता के साथ लगभग मेल खाते हैं। विखंडन कार्यों के साथ स्पिनरों को हल करके इसका वर्णन किया जा सकता है , पार्टन घनत्व कार्यों के विकास के समान तरीके से। यह ए द्वारा वर्णित है Dokshitzer [de]-व्लादिमीर ग्रिबोव-लेव लिपाटोव-गिडो अल्टारिली-जियोर्जियो पैरिसि (डीग्लैप) टाइप एकक्यूलेशन

पार्टन शावरिंग क्रमिक रूप से कम ऊर्जा के हिस्से पैदा करता है, और इसलिए परेशान करने वाले क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। फेनोमेनोलॉजिकल मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन का संयोजन होता है, जो स्वाभाविक रूप से गैर-परेशान करने वाला होता है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक घटना जनरेटर में लागू किया गया है।

इन्फ्रारेड और कोलीनियर सुरक्षा

एक जेट एल्गोरिद्म इन्फ्रारेड सुरक्षित होता है यदि यह एक सॉफ्ट रेडिएशन जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करता है। इसी तरह, एक जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक इनपुट के संरेखीय विभाजन को शुरू करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के बारे में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो सीड पार्टन के पार्टन शावर से गुजरने की उम्मीद की जाती है, जिसमें हैड्रोनाइज़ेशन शुरू होने से पहले लगभग-समरेख विभाजन की एक श्रृंखला सम्मिलित हो सकती है। इसके अलावा, जब संसूचक प्रतिक्रिया में उतार-चढ़ाव की बात आती है तो जेट एल्गोरिदम मजबूत होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म इन्फ्रारेड और कोलीनियर सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि गड़बड़ी सिद्धांत के किसी भी क्रम पर एक परिमित क्रॉस-सेक्शन प्राप्त किया जा सकता है।

यह भी देखें

  • डिजेट घटना

संदर्भ

  1. Salam, Gavin P. (2010-06-01). "जेटोग्राफी की ओर". The European Physical Journal C (in English). 67 (3): 637–686. arXiv:0906.1833. doi:10.1140/epjc/s10052-010-1314-6. ISSN 1434-6052.


बाहरी संबंध