टॉरॉयडल ग्राफ

From Vigyanwiki
Revision as of 00:52, 27 April 2023 by alpha>Ravisingh
एक टोरस्र्स पर सन्निहित 14 शीर्षों वाला एक घनीय लेखाचित्र
स्थूलक में सन्निहित किया गया हीवुड लेखाचित्र और संबंधित मानचित्र।

आलेख सिद्धांत के गणितीय क्षेत्र में, टोरॉयडल लेखाचित्र एक लेखाचित्र (असतत गणित) है जो स्थूलक पर लेखाचित्र सन्निहित हो सकता है। दूसरे शब्दों में, लेखाचित्र के शीर्ष (आलेख सिद्धांत) को एक स्थूलक पर रखा जा सकता है कि कोई किनारा पार न हो।

उदाहरण

कोई भी लेखाचित्र जिसे एक समतल में सन्निहित किया जा सकता है, एक स्थूलक में भी सन्निहित किया जा सकता है। श्रेणी (गणित) 1 का टॉरॉयडल लेखाचित्र एक स्थूलक में सन्निहित है लेकिन एक समतल में नहीं किया जा सकता। हीवुड लेखाचित्र, पुर्ण लेखाचित्र K7 (और इसलिए K5 और K6), पीटरसन लेखाचित्र (और इसलिए पूर्ण द्विदलीय लेखाचित्र K3,3, चूंकि पीटरसन लेखाचित्र में इसका एक उपखंड सम्मिलित है), ब्लानुसा स्नार्क्स में से एक,[1] और सभी मोबियस सोपान टॉरॉयडल हैं। अधिक सामान्यतः,पारगमन संख्या (आलेख सिद्धांत) 1 वाला कोई भी लेखाचित्र टॉरॉयडल होता है। अधिक पारगमन अंक वाले कुछ लेखाचित्र भी टोरॉयडल हैं: मोबियस-कैंटर लेखाचित्र, उदाहरण के लिए, पारगमन अंक 4 और टोरॉयडल है।[2]

गुण

किसी भी टोरॉयडल लेखाचित्र में अधिक से अधिक 7 रंगीन संख्या होती है।[3] पूरा लेखाचित्र K7 रंगीन संख्या 7 के साथ टोरॉयडल लेखाचित्र का एक उदाहरण प्रदान करता है।[4]

किसी भी त्रिकोण-मुक्त टॉरॉयडल लेखाचित्र में अधिकतम 4 वर्णिक संख्या होती है।[5]

फेरी के प्रमेय के अनुरूप परिणाम से, किसी भी टोरॉयडल लेखाचित्र को आवधिक सीमा परिस्थिति के साथ एक आयत में सीधे किनारों के साथ लेखाचित्र आरेखण हो सकता है।[6] इसके अलावा, टुट्टे के वसंत प्रमेय का समधर्मी इस स्तिथि में लागू होता है।[7]

टॉरॉयडल लेखाचित्र में अधिकतम 7 पृष्ठों के साथ पुस्तक अंत: स्थापन भी होती है।[8]

रुकावटें

रॉबर्टसन-सीमोर प्रमेय के अनुसार, न्यूनतम गैर-टोरॉयडल लेखाचित्र का एक परिमित सम्मुच्चय H उपस्थित है, जैसे कि एक लेखाचित्र टॉरॉयडल है यदि और केवल यदि H में कोई लेखाचित्र लघु नहीं है। अर्थात्, H टोरॉयडल लेखाचित्र के लिए वर्जित लेखाचित्र लक्षण वर्णन का सम्मुच्चय बनाता है। पूरा सम्मुच्चय H ज्ञात नहीं है, लेकिन इसमें कम से कम 17,523 लेखाचित्र हैं। वैकल्पिक रूप से, कम से कम 250,815 गैर-टोरॉयडल लेखाचित्र हैं जो सांस्थितिक अल्प क्रमण में न्यूनतम हैं। एक लेखाचित्र टोरॉयडल है यदि और केवल यदि इसमें इन लेखाचित्र में से कोई भी सांस्थितिक अल्प के रूप में नहीं है।[9]

गैलरी


यह भी देखें

टिप्पणियाँ


संदर्भ