सर्वोत्कृष्टता (भौतिकी)
This article needs attention from an expert in physics. The specific problem is: Unclear phrasing in #Tracker behavior and #Quintom scenario. (April 2009) |
भौतिकी में, सर्वोत्कृष्टता गुप्त ऊर्जा का एक परिकल्पनात्मक रूप है, अधिक थावत् रूप से एक अदिश क्षेत्र, जिसे ब्रह्मांड के त्वरित विस्तार के अवलोकन के स्पष्टीकरण के रूप में माना जाता है। इस परिदृश्य का पहला उदाहरण भरत विष्णु रात्रा और जिम पीबल्स (1988) और क्रिस्टोफ वेटेरिच (1988) द्वारा प्रस्तावित किया गया था।[1][2] इस अवधारणा का विस्तार अधिक सामान्य प्रकार के समय-भिन्न अंधेरे ऊर्जा में किया गया था, और सर्वप्रथम 1998 में रॉबर्ट आर कैलडवेल, राहुल दवे और पॉल स्टीनहार्ट द्वारा एक पत्र में क्विंटेसेंस शब्द प्रस्तुत किया गया था।[3] कुछ भौतिकविदों द्वारा इसे पाँचवीं शक्ति के रूप में प्रस्तावित किया गया है।[4][5][6][7] सर्वोत्कृष्टता श्याम ऊर्जा की ब्रह्माण्ड संबंधी स्थिर व्याख्या से इस मायने में भिन्न है कि यह गतिशील है; अर्थात्, यह समय के साथ बदलता है, ब्रह्माण्ड संबंधी स्थिरांक के विपरीत, जो परिभाषा के अनुसार नहीं बदलता है। अपनी गतिज और स्थितिज ऊर्जा के अनुपात के आधार पर सर्वोत्कृष्टता या तो आकर्षक या प्रतिकारक हो सकती है। इस अभिधारणा के साथ काम करने वालों का मानना है कि लगभग दस अरब साल पहले, महा विस्फोट के लगभग 3.5 अरब साल बाद, सार तत्व प्रतिकारक बन गया।[8]
शोधकर्ताओं के एक समूह ने 2021 में तर्क दिया कि हबल नियम की टिप्पणियों का अर्थ यह हो सकता है कि गैर-युग्मन स्थिरांक वाले केवल सर्वोत्कृष्ट प्रतिरूप व्यवहार्य हैं।[9]
शब्दावली
नाम क्विंटा सार (पांचवें तत्व) से आता है। तथाकथित लैटिन में मध्य युग से प्रारम्भ होने वाला, यह (पहला) तत्व अरस्तू द्वारा ग्रीस में अन्य चार प्राचीन शास्त्रीय तत्वों # शास्त्रीय तत्वों में जोड़ा गया था क्योंकि उन्होंने सोचा था कि यह दिव्य दुनिया का सार था। अरस्तू को एक शुद्ध, उत्तम और मूल तत्व माना जाता है। बाद के विद्वानों ने इस तत्व की पहचान एथर (शास्त्रीय तत्व) से की। इसी तरह, आधुनिक सर्वोत्कृष्टता ब्रह्मांड के समग्र द्रव्यमान-ऊर्जा सामग्री में पांचवां ज्ञात गतिशील, समय-निर्भर और स्थानिक रूप से अमानवीय योगदान होगा।
बेशक, अन्य चार घटक शास्त्रीय तत्व # ग्रीस में शास्त्रीय तत्व नहीं हैं, बल्कि बैरोनिक पदार्थ, न्युट्रीनो, गहरे द्रव्य , [और] विद्युत चुम्बकीय विकिरण हैं। हालांकि न्यूट्रिनो को कभी-कभी विकिरण माना जाता है, इस संदर्भ में विकिरण शब्द का उपयोग केवल द्रव्यमान रहित फोटॉनों के संदर्भ में किया जाता है। ब्रह्मांड की स्थानिक वक्रता (जिसका पता नहीं चला है) को बाहर रखा गया है क्योंकि यह गैर-गतिशील और सजातीय है; ब्रह्माण्ड संबंधी स्थिरांक को इस अर्थ में पाँचवाँ घटक नहीं माना जाएगा, क्योंकि यह गैर-गतिशील, सजातीय और समय-स्वतंत्र है।[3]
अदिश क्षेत्र
सर्वोत्कृष्टता (Q) अवस्था के समीकरण (ब्रह्माण्ड विज्ञान) के साथ एक अदिश क्षेत्र है जहाँ wq, दबाव पी का अनुपातq और घनत्व q, संभावित ऊर्जा द्वारा दिया जाता है और एक गतिज शब्द:
इसलिए, सर्वोत्कृष्ट गतिशील है, और आम तौर पर एक घनत्व और डब्ल्यू हैq पैरामीटर जो समय के साथ बदलता रहता है। इसके विपरीत, एक ब्रह्माण्ड संबंधी स्थिरांक स्थिर होता है, जिसमें एक निश्चित ऊर्जा घनत्व और w होता हैq = −1.
ट्रैकर व्यवहार
सर्वोत्कृष्टता के कई मॉडलों में एक ट्रैकर व्यवहार होता है, जो रात्रा और पीबल्स (1988) और पॉल स्टीनहार्ट एट अल के अनुसार है। (1999) ब्रह्माण्ड संबंधी स्थिरांक समस्या को आंशिक रूप से हल करता है।[10] इन मॉडलों में, सारक क्षेत्र में एक घनत्व होता है जो विकिरण घनत्व को बारीकी से ट्रैक करता है (लेकिन उससे कम होता है) जब तक कि बिग बैंग#मैटर डोमिनेशन|मैटर-विकिरण समानता की समयरेखा नहीं हो जाती है, जो क्विंटेसेंस को डार्क एनर्जी के समान विशेषताओं को प्रारम्भ करने के लिए ट्रिगर करता है, अंततः ब्रह्मांड पर हावी। यह स्वाभाविक रूप से डार्क एनर्जी के लो ऊर्जा पैमाने को सेट करता है।[11] ब्रह्माण्ड संबंधी डेटा के साथ ट्रैकर समाधानों द्वारा दिए गए ब्रह्मांड के स्थान के अनुमानित मीट्रिक विस्तार की तुलना करते समय, ट्रैकर समाधानों की एक मुख्य विशेषता यह है कि राज्य (ब्रह्माण्ड विज्ञान) के अपने समीकरण के व्यवहार का सही ढंग से वर्णन करने के लिए चार मापदंडों की आवश्यकता होती है,[12][13] जबकि यह दिखाया गया है कि अधिकतम दो-पैरामीटर प्रतिरूप को मध्यावधि भविष्य के डेटा (क्षितिज 2015-2020) द्वारा इष्टतम रूप से विवश किया जा सकता है।[14]
विशिष्ट प्रतिरूप
सर्वोत्कृष्टता के कुछ विशेष मामले प्रेत ऊर्जा हैं, जिसमें डब्ल्यूq < −1,[15] और के-सार (गतिज सार के लिए संक्षिप्त), जिसमें गतिज ऊर्जा का एक गैर-मानक रूप है। यदि इस प्रकार की ऊर्जा मौजूद होती, तो यह एक बड़ी दरार पैदा कर देती[16] डार्क एनर्जी के बढ़ते ऊर्जा घनत्व के कारण ब्रह्मांड में, जिसके कारण ब्रह्मांड का विस्तार घातीय दर से अधिक तेजी से बढ़ेगा।
होलोग्राफिक डार्क एनर्जी
होलोग्राफिक डार्क एनर्जी प्रतिरूप, कॉस्मोलॉजिकल कॉन्स्टेंट प्रतिरूप की तुलना में, एक उच्च अध: पतन (गणित) का संकेत देते हैं।[clarification needed][17] यह सुझाव दिया गया है कि डार्क एनर्जी अंतरिक्ष समय के क्वांटम उतार-चढ़ाव से उत्पन्न हो सकती है, और ब्रह्मांड के घटना क्षितिज द्वारा सीमित है।[18] सर्वोत्कृष्ट डार्क एनर्जी के अध्ययन में पाया गया कि यह होलोग्राफिक थर्मलाइजेशन के आधार पर स्पेसटाइम सिमुलेशन में गुरुत्वाकर्षण पतन पर हावी है। इन परिणामों से पता चलता है कि पंचक का राज्य पैरामीटर जितना छोटा होता है, प्लाज्मा को गर्म करना उतना ही कठिन होता है।[19]
क्विंटम परिदृश्य
2004 में, जब वैज्ञानिकों ने ब्रह्माण्ड संबंधी डेटा के साथ श्याम ऊर्जा के विकास को फिट किया, तो उन्होंने पाया कि राज्य के समीकरण ने संभवतः ब्रह्माण्ड संबंधी स्थिर सीमा को पार कर लिया था (w = -1) ऊपर से नीचे की ओर। एक सिद्ध नो-गो प्रमेय इस स्थिति को इंगित करता है, जिसे क्विंटम परिदृश्य कहा जाता है, आदर्श गैसों या स्केलर क्षेत्रों से जुड़े डार्क एनर्जी प्रतिरूप के लिए कम से कम दो डिग्री की स्वतंत्रता की आवश्यकता होती है।[20]
यह भी देखें
संदर्भ
- ↑ Wetterich, C. (1988-06-13). "ब्रह्मांड विज्ञान और तनुकरण समरूपता का भाग्य". Nuclear Physics B (in English). 302 (4): 668–696. arXiv:1711.03844. Bibcode:1988NuPhB.302..668W. doi:10.1016/0550-3213(88)90193-9. ISSN 0550-3213. S2CID 118970077.
- ↑ Doran, Michael (2001-10-01). et al. "सर्वोत्कृष्टता और लौकिक माइक्रोवेव पृष्ठभूमि चोटियों का पृथक्करण". The Astrophysical Journal (in English). 559 (2): 501–506. arXiv:astro-ph/0012139. Bibcode:2001ApJ...559..501D. doi:10.1086/322253. S2CID 119454400 – via Iopscience.
- ↑ 3.0 3.1 Caldwell, R.R.; Dave, R.; Steinhardt, P.J. (1998). "राज्य के सामान्य समीकरण के साथ एक ऊर्जा घटक की ब्रह्माण्ड संबंधी छाप". Phys. Rev. Lett. 80 (8): 1582–1585. arXiv:astro-ph/9708069. Bibcode:1998PhRvL..80.1582C. doi:10.1103/PhysRevLett.80.1582. S2CID 597168.
- ↑ Carroll, S.M. (1998). "Quintessence and the Rest of the World: Suppressing Long-Range Interactions". Phys. Rev. Lett. 81 (15): 3067–3070. arXiv:astro-ph/9806099. Bibcode:1998PhRvL..81.3067C. doi:10.1103/PhysRevLett.81.3067. S2CID 14539052.
- ↑ Wetterich, C. "सर्वोत्कृष्टता - मौलिक पैमाने की भिन्नता से पांचवां बल" (PDF). Heidelberg University.
- ↑ Dvali, Gia; Zaldarriaga, Matias (2002). "Changing α With Time: Implications For Fifth-Force-Type Experiments And Quintessence" (PDF). Physical Review Letters. 88 (9): 091303. arXiv:hep-ph/0108217. Bibcode:2002PhRvL..88i1303D. doi:10.1103/PhysRevLett.88.091303. PMID 11863992. S2CID 32730355.
- ↑ Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo (23 July 2012). "Natural Quintessence in String Theory" – via arXiv.org.
- ↑ Wanjek, Christopher. "Quintessence, accelerating the Universe?". Astronomy Today.
- ↑ Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (16 September 2021). "Does Hubble Tension Signal a Breakdown in FLRW Cosmology?". Classical and Quantum Gravity. 38 (18): 184001. arXiv:2105.09790. Bibcode:2021CQGra..38r4001K. doi:10.1088/1361-6382/ac1a81. ISSN 0264-9381. S2CID 234790314.
- ↑ Zlatev, I.; Wang, L.; Steinhardt, P. (1999). "Quintessence, Cosmic Coincidence, and the Cosmological Constant". Physical Review Letters. 82 (5): 896–899. arXiv:astro-ph/9807002. Bibcode:1999PhRvL..82..896Z. doi:10.1103/PhysRevLett.82.896. S2CID 119073006.
- ↑ Steinhardt, P.; Wang, L.; Zlatev, I. (1999). "Cosmological tracking solutions". Physical Review D. 59 (12): 123504. arXiv:astro-ph/9812313. Bibcode:1999PhRvD..59l3504S. doi:10.1103/PhysRevD.59.123504. S2CID 40714104.
- ↑ Linden, Sebastian; Virey, Jean-Marc (2008). "Test of the Chevallier-Polarski-Linder parametrization for rapid dark energy equation of state transitions". Physical Review D. 78 (2): 023526. arXiv:0804.0389. Bibcode:2008PhRvD..78b3526L. doi:10.1103/PhysRevD.78.023526. S2CID 118288188.
- ↑ Ferramacho, L.; Blanchard, A.; Zolnierowsky, Y.; Riazuelo, A. (2010). "Constraints on dark energy evolution". Astronomy & Astrophysics. 514: A20. arXiv:0909.1703. Bibcode:2010A&A...514A..20F. doi:10.1051/0004-6361/200913271. S2CID 17386518.
- ↑ Linder, Eric V.; Huterer, Dragan (2005). "How many cosmological parameters". Physical Review D. 72 (4): 043509. arXiv:astro-ph/0505330. Bibcode:2005PhRvD..72d3509L. doi:10.1103/PhysRevD.72.043509. S2CID 14722329.
- ↑ Caldwell, R. R. (2002). "A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state". Physics Letters B. 545 (1–2): 23–29. arXiv:astro-ph/9908168. Bibcode:2002PhLB..545...23C. doi:10.1016/S0370-2693(02)02589-3. S2CID 9820570.
- ↑ Antoniou, Ioannis; Perivolaropoulos, Leandros (2016). "Geodesics of McVittie Spacetime with a Phantom Cosmological Background". Phys. Rev. D. 93 (12): 123520. arXiv:1603.02569. Bibcode:2016PhRvD..93l3520A. doi:10.1103/PhysRevD.93.123520. S2CID 18017360.
- ↑ Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui (2015). "कॉस्मोलॉजिकल कॉन्स्टेंट के साथ होलोग्राफिक डार्क एनर्जी". Journal of Cosmology and Astroparticle Physics. 2015 (8): 012. arXiv:1502.01156. Bibcode:2015JCAP...08..012H. doi:10.1088/1475-7516/2015/08/012. S2CID 118732915.
- ↑ Shan Gao (2013). "होलोग्राफिक डार्क एनर्जी की व्याख्या". Galaxies. 1 (3): 180–191. Bibcode:2013Galax...1..180G. doi:10.3390/galaxies1030180.
- ↑ Zeng, Xiao-Xiong; Chen, De-You; Li, Li-Fang (2015). "स्पेसटाइम में होलोग्राफिक थर्मलाइजेशन और गुरुत्वाकर्षण का पतन सर्वोत्कृष्ट डार्क एनर्जी का प्रभुत्व है". Physical Review D. 91 (4): 046005. arXiv:1408.6632. Bibcode:2015PhRvD..91d6005Z. doi:10.1103/PhysRevD.91.046005. S2CID 119107827.
- ↑ Hu, Wayne (2005). "Crossing the phantom divide: Dark energy internal degrees of freedom". Physical Review D. 71 (4): 047301. arXiv:astro-ph/0410680. Bibcode:2005PhRvD..71d7301H. doi:10.1103/PhysRevD.71.047301. S2CID 8791054.
अग्रिम पठन
- Christof, Wetterich (1987-09-24). "Cosmology and the fate of dilatation symmetry". Nuclear Physics B. 302 (4): 668–696. arXiv:1711.03844. Bibcode:1988NuPhB.302..668W. doi:10.1016/0550-3213(88)90193-9. S2CID 118970077.
- Ostriker JP; Steinhardt P (January 2001). "The Quintessential Universe". Scientific American. 284 (1): 46–53. Bibcode:2001SciAm.284a..46O. doi:10.1038/scientificamerican0101-46. PMID 11132422.
- Lawrence M. Krauss (2000). Quintessence: The Search for Missing Mass in the Universe. Basic Books. ISBN 978-0465037414.