सहसंबंध फलन (सांख्यिकीय यांत्रिकी)
सांख्यिकीय यांत्रिकी में, सहसंबंध फलन एक प्रणाली में अनुक्रम का एक उपाय है जैसा कि गणितीय सहसंबंध फलन द्वारा विशेषता है। सहसंबंध फलन वर्णन करते हैं कि सूक्ष्म चर, जैसे कि स्पिन और घनत्व, विभिन्न पदों पर कैसे संबंधित हैं। अधिक विशेष रूप से, सहसंबंध फलन यह निर्धारित करते हैं कि कैसे सूक्ष्म चर अंतरिक्ष और समय में औसतन एक दूसरे के साथ सह-भिन्न होते हैं। इस तरह के स्थानिक सहसंबंधों का एक उत्कृष्ट उदाहरण फेरो- और एंटीफेरोमैग्नेटिक सामग्रियों में है, जहां स्पिन क्रमशः अपने निकटतम पड़ोसियों के साथ समानांतर और एंटीपैरल को संरेखित करना पसंद करते हैं। ऐसी सामग्रियों में स्पिन के बीच स्थानिक सहसंबंध को चित्र में दाईं ओर दिखाया गया है।
परिभाषाएँ
सहसंबंध फलन की सबसे आम परिभाषा दो यादृच्छिक चर के स्केलर उत्पाद का विहित पहनावा (थर्मल) औसत है, और , पदों पर और और समय और :
हालाँकि, सांख्यिकीय यांत्रिकी में, सभी सहसंबंध कार्य स्वतःसंबंध कार्य नहीं होते हैं। उदाहरण के लिए, बहुघटक संघनित चरणों में, विभिन्न तत्वों के बीच जोड़ी सहसंबंध समारोह अक्सर रुचि का होता है। इस तरह के मिश्रित-तत्व जोड़ी सहसंबंध कार्य क्रॉस-सहसंबंध कार्यों का एक उदाहरण हैं, क्योंकि यादृच्छिक चर और दो अलग-अलग तत्वों के लिए फ़ंक्शन स्थिति के रूप में घनत्व में औसत भिन्नता का प्रतिनिधित्व करते हैं।
संतुलन समान-समय (स्थानिक) सहसंबंध फलन
अक्सर, किसी को किसी दिए गए यादृच्छिक चर के स्थानिक प्रभाव में दिलचस्पी होती है, बाद के समय पर विचार किए बिना, अपने स्थानीय पर्यावरण पर स्पिन की दिशा कहें। इस मामले में, हम सिस्टम के समय के विकास की उपेक्षा करते हैं, इसलिए उपरोक्त परिभाषा के साथ फिर से लिखी गई है। यह समान-समय के सहसंबंध फ़ंक्शन को परिभाषित करता है। इसे इस प्रकार लिखा गया है:
अक्सर, कोई संदर्भ समय और संदर्भ त्रिज्या को छोड़ देता है संतुलन मानकर (और इस प्रकार पहनावा का समय अपरिवर्तनीय) और सभी नमूना पदों पर औसत उपज:
जहां, फिर से, असंबद्ध चरों को घटाना है या नहीं, इसका चुनाव क्षेत्रों के बीच भिन्न होता है। रेडियल डिस्ट्रीब्यूशन फ़ंक्शन एक समान-समय के सहसंबंध फ़ंक्शन का एक उदाहरण है जहां असंबद्ध संदर्भ आमतौर पर घटाया नहीं जाता है। अन्य समान-समय स्पिन-स्पिन सहसंबंध फलन इस पृष्ठ पर विभिन्न सामग्रियों और स्थितियों के लिए दिखाए जाते हैं।
संतुलन समान-स्थिति (लौकिक) सहसंबंध फलन
सूक्ष्म चरों के अस्थायी विकास में भी रुचि हो सकती है। दूसरे शब्दों में, किसी दिए गए स्थान और समय और पर एक सूक्ष्म चर का मान, उसी सूक्ष्म चर के मान को बाद के समय (और आमतौर पर उसी स्थिति में) पर कैसे प्रभावित करता है। इस तरह के लौकिक सहसंबंधों को समान-स्थिति सहसंबंध कार्यों के माध्यम से परिमाणित किया जाता है। उन्हें समान-समय के सहसंबंध कार्यों के ऊपर समान रूप से परिभाषित किया गया है, लेकिन अब हम सेट करके स्थानिक निर्भरताओं की उपेक्षा करते हैं:
संतुलन सहसंबंध फलनों से परे सामान्यीकरण
उपरोक्त सभी सहसंबंध फलनों को संतुलन सांख्यिकीय यांत्रिकी के संदर्भ में परिभाषित किया गया है। हालांकि, संतुलन से दूर प्रणालियों के लिए सहसंबंध फलनों को परिभाषित करना संभव है। की सामान्य परिभाषा की जांच करते हुए, यह स्पष्ट है कि कोई इन सहसंबंध फलनों में प्रयुक्त यादृच्छिक चर को परिभाषित कर सकता है, जैसे परमाणु स्थिति और स्पिन, संतुलन से दूर। जैसे, उनका अदिश उत्पाद संतुलन से दूर अच्छी तरह से परिभाषित है। संक्रिया जो अब संतुलन से दूर अच्छी तरह से परिभाषित नहीं है, संतुलन समेकन पर औसत है। गैर-संतुलन प्रणाली के लिए यह औसत प्रक्रिया आमतौर पर पूरे नमूने में स्केलर उत्पाद के औसत से बदल दी जाती है। यह प्रकीर्णन प्रयोगों और कंप्यूटर सिमुलेशन में विशिष्ट है, और अक्सर चश्मे के रेडियल वितरण कार्यों को मापने के लिए उपयोग किया जाता है।
संतुलन से थोड़ा परेशान सिस्टम के लिए कोई भी राज्यों पर औसत परिभाषित कर सकता है। देखें, उदाहरण के लिए, http://xbeams.chem.yale.edu/~batista/vaa/node56.html
सहसंबंध फलनों को मापना
सहसंबंध फलनों को आम तौर पर बिखरने वाले प्रयोगों से मापा जाता है। उदाहरण के लिए, एक्स-रे प्रकीर्णन प्रयोग सीधे इलेक्ट्रॉन-इलेक्ट्रॉन समान समय के सहसंबंधों को मापते हैं।[1] तात्विक संरचना कारकों के ज्ञान से, तात्विक जोड़ी सहसंबंध फलनों को भी माप सकते हैं। अधिक जानकारी के लिए रेडियल वितरण फलन देखें। एक्स-रे स्कैटरिंग के विपरीत समान-समय स्पिन-स्पिन सहसंबंध फलनों को न्यूट्रॉन स्कैटरिंग के साथ मापा जाता है। न्यूट्रॉन प्रकीर्णन से जोड़ी सहसंबंधों के बारे में भी जानकारी मिल सकती है। लगभग एक माइक्रोमीटर से बड़े कणों से बनी प्रणालियों के लिए, ऑप्टिकल माइक्रोस्कोपी का उपयोग समान-समय और समान-स्थिति सहसंबंध फलनों दोनों को मापने के लिए किया जा सकता है। ऑप्टिकल माइक्रोस्कोपी इस प्रकार विशेष रूप से दो आयामों में कोलाइडयन निलंबन के लिए आम है।
सहसंबंध फलनों का समय विकास
1931 में, लार्स ऑनसेगर ने प्रस्तावित किया कि संतुलन पर सूक्ष्म तापीय उतार-चढ़ाव का प्रतिगमन छोटे गैर-संतुलन गड़बड़ी की छूट के मैक्रोस्कोपिक कानून का पालन करता है।[2] इसे ऑनसेजर प्रतिगमन परिकल्पना के रूप में जाना जाता है। सूक्ष्म चर के मूल्यों के रूप में बड़े समयमानों द्वारा अलग किया गया थर्मोडायनामिक संतुलन से हम जो उम्मीद करेंगे उससे परे असंबद्ध होना चाहिए, एक सहसंबंध फलन के समय में विकास को एक भौतिक दृष्टिकोण से देखा जा सकता है क्योंकि प्रणाली धीरे-धीरे कुछ सूक्ष्मदर्शी के विनिर्देश के माध्यम से उस पर रखी गई प्रारंभिक स्थितियों को 'भूल' रही है। चर। सहसंबंध फलनों के समय के विकास और मैक्रोस्कोपिक सिस्टम के समय के विकास के बीच वास्तव में एक सहज संबंध है: औसतन, सहसंबंध फलन उसी तरह समय में विकसित होता है जैसे कि एक प्रणाली सहसंबंध फलन के प्रारंभिक मूल्य द्वारा निर्दिष्ट शर्तों में तैयार की गई थी। और विकसित होने दिया।[1]
सिस्टम के संतुलन में उतार-चढ़ाव उतार-चढ़ाव-अपव्यय प्रमेय के माध्यम से बाहरी गड़बड़ी के प्रति अपनी प्रतिक्रिया से संबंधित हो सकते हैं।
चरण संक्रमण और सहसंबंध फलनों के बीच संबंध
निरंतर चरण संक्रमण, जैसे धातु मिश्र धातुओं और फेरोमैग्नेटिक-पैरामैग्नेटिक ट्रांज़िशन में ऑर्डर-डिसऑर्डर ट्रांज़िशन, एक ऑर्डर से अव्यवस्थित अवस्था में संक्रमण को शामिल करता है। सहसंबंध फलनों के संदर्भ में, महत्वपूर्ण तापमान के नीचे सभी जाली बिंदुओं के लिए समान-समय सहसंबंध फलन गैर-शून्य है, और महत्वपूर्ण तापमान के ऊपर केवल काफी छोटे त्रिज्या के लिए गैर-नगण्य है। जैसा कि चरण संक्रमण निरंतर है, जिस लंबाई पर सूक्ष्म चर सहसंबद्ध होते हैं सामग्री को उसके महत्वपूर्ण तापमान के माध्यम से गर्म होने पर अनंत से परिमित होने तक लगातार संक्रमण करना चाहिए। यह महत्वपूर्ण बिंदु पर दूरी के एक फलन के रूप में सहसंबंध फलन की शक्ति-कानून निर्भरता को जन्म देता है। यह लोहचुंबकीय सामग्री के मामले में बाईं ओर के चित्र में दिखाया गया है, जिसमें चुंबकत्व पर अनुभाग में मात्रात्मक विवरण सूचीबद्ध हैं।
अनुप्रयोग
चुंबकत्व
स्पिन (भौतिकी) प्रणाली में, समान समय के सहसंबंध फलन का विशेष रूप से अच्छी तरह से अध्ययन किया जाता है। यह सभी संभावित आदेशों पर दो जाली बिंदुओं पर स्पिन के स्केलर उत्पाद के विहित पहनावा (थर्मल) औसत का वर्णन करता है: यहाँ कोष्ठक का अर्थ उपर्युक्त तापीय औसत से है। इस फ़ंक्शन के योजनाबद्ध प्लॉट बाईं ओर क्यूरी तापमान के नीचे, ऊपर और ऊपर एक फेरोमैग्नेटिक सामग्री के लिए दिखाए गए हैं।
यहां तक कि एक चुंबकीय रूप से अव्यवस्थित चरण में, विभिन्न पदों पर स्पिन सहसंबद्ध होते हैं, अर्थात, यदि दूरी r बहुत छोटी है (कुछ लंबाई के पैमाने की तुलना में की तुलना में), स्पिन के बीच की बातचीत उन्हें सहसंबद्ध बनाती है। संरेखण जो स्पिन के बीच बातचीत के परिणामस्वरूप स्वाभाविक रूप से उत्पन्न होता है, थर्मल प्रभाव से नष्ट हो जाता है। उच्च तापमान पर घातीय रूप से क्षयकारी सहसंबंध बढ़ती दूरी के साथ देखे जाते हैं, साथ ही सहसंबंध फलन को एसिम्प्टोटिक रूप से दिया जाता है
जहां r स्पिन के बीच की दूरी है, और d सिस्टम का आयाम है, और एक घातांक है, जिसका मान इस बात पर निर्भर करता है कि सिस्टम अव्यवस्थित चरण में है (यानी महत्वपूर्ण बिंदु से ऊपर), या आदेशित चरण में (यानी महत्वपूर्ण बिंदु से नीचे)। उच्च तापमान पर, स्पिन के बीच की दूरी के साथ सहसंबंध तेजी से शून्य हो जाता है। रेडियल दूरी के एक फलन के रूप में समान घातीय क्षय भी नीचे देखा गया है , लेकिन बड़ी दूरी पर सीमा के साथ माध्य चुंबकत्व होता है . सटीक रूप से महत्वपूर्ण बिंदु पर, एक बीजगणितीय व्यवहार देखा जाता है
कहाँ एक क्रांतिक घातांक है, जिसका गैर-महत्वपूर्ण घातांक के साथ कोई सरल संबंध नहीं है ऊपर पेश किया गया। उदाहरण के लिए, द्वि-आयामी ईज़िंग मॉडल (लघु-श्रेणी वाले फेरोमैग्नेटिक इंटरैक्शन के साथ) का सटीक समाधान क्रांतिकता पर सटीक रूप से देता है , लेकिन आलोचना से ऊपर और आलोचनात्मकता से नीचे . [3][4] जैसे ही जैसे ही तापमान कम होता है, थर्मल डिसऑर्डरिंग कम हो जाती है, और एक निरंतर चरण संक्रमण में सहसंबंध की लंबाई अलग हो जाती है, क्योंकि सहसंबंध की लंबाई को चरण संक्रमण के ऊपर एक परिमित मान से चरण संक्रमण के नीचे अनंत तक लगातार संक्रमण करना चाहिए:
एक अन्य महत्वपूर्ण प्रतिपादक के साथ .
इन बदलावों में देखे जाने वाले स्केलिंग इनवेरियन के लिए यह पावर लॉ सहसंबंध जिम्मेदार है। उल्लिखित सभी घातांक तापमान से स्वतंत्र हैं। वे वास्तव में सार्वभौमिक हैं, अर्थात विभिन्न प्रकार की प्रणालियों में समान पाए जाते हैं।
रेडियल वितरण कार्य
एक सामान्य सहसंबंध फलन रेडियल वितरण फ़ंक्शन है जो अक्सर सांख्यिकीय यांत्रिकी और द्रव यांत्रिकी में देखा जाता है। क्वांक्वांटम व्युत्क्रम बिखरने की विधि और बेथ एनसैट्ज के माध्यम से सहसंबंध फलन की गणना बिल्कुल सॉल्व करने योग्य मॉडल (वन-डायमेंशनल बोस गैस, स्पिन चेन, हबर्ड मॉडल) में की जा सकती है। एक समदैशिक XY मॉडल में, समय और तापमान के सहसंबंधों का मूल्यांकन इसके, कोरेपिन, इज़रगिन और स्लाव्नोव द्वारा किया गया था[5]
उच्च क्रम सहसंबंध फलन
उच्च-क्रम सहसंबंध फलनों में कई संदर्भ बिंदु शामिल होते हैं, और दो से अधिक यादृच्छिक चर के उत्पाद के अपेक्षित मूल्य को लेकर उपरोक्त सहसंबंध फलन के सामान्यीकरण के माध्यम से परिभाषित किया जाता है:
हालांकि, इस तरह के उच्च क्रम सहसंबंध फलनों की व्याख्या करना और मापना अपेक्षाकृत कठिन है। उदाहरण के लिए, जोड़ी वितरण कार्यों के उच्च-क्रम के एनालॉग्स को मापने के लिए, सुसंगत एक्स-रे स्रोतों की आवश्यकता होती है। इस तरह के विश्लेषण के सिद्धांत[6][7] और आवश्यक एक्स-रे क्रॉस-सहसंबंध फलनों के प्रयोगात्मक माप दोनों सक्रिय अनुसंधान के क्षेत्र हैं।[8]
संदर्भ
- ↑ 1.0 1.1 Sethna, James P. (2006). "Chapter 10: Correlations, response, and dissipation". Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press. ISBN 978-0198566779.
- ↑ Onsager, Lars (1931). "Reciprocal Relations in Irreversible Processes. I." Physical Review. 38 (405): 2265–2279. Bibcode:1931PhRv...37..405O. doi:10.1103/PhysRev.37.405.
- ↑ B.M. McCoy and T.T. Wu, The two-dimensional Ising model, Harvard Univ. Press (Cambridge Mass. 1973)
- ↑ M. Henkel, Conformal invariance and critical phenomena, Springer (Heidelberg 1999)
- ↑ A.R. Its, V.e. Korepin, A.G. Izergin & N.A. Slavnov (2009) Temperature Correlation of Quantum Spins from arxiv.org.
- ↑ Altarelli, M.; Kurta, R. P.; Vartanyants, I. A. (2010). "X-ray cross-correlation analysis and local symmetries of disordered systems: General theory". Physical Review B. 82 (10): 104207. arXiv:1006.5382. Bibcode:2010PhRvB..82j4207A. doi:10.1103/PhysRevB.82.104207. S2CID 119243898.
- ↑ Lehmkühler, F.; Grübel, G.; Gutt, C. (2014). "एक्स-रे क्रॉस-सहसंबंध विधियों द्वारा मॉडल सिस्टम में ओरिएंटल ऑर्डर का पता लगाना". Journal of Applied Crystallography. 47 (4): 1315. arXiv:1402.1432. doi:10.1107/S1600576714012424. S2CID 97097937.
- ↑ Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A. D.; Duri, A.; Zontone, F.; Grubel, G.; Dosch, H. (2009). "एक्स-रे क्रॉस सहसंबंध विश्लेषण अव्यवस्थित पदार्थ में छिपी हुई स्थानीय समरूपता को उजागर करता है". Proceedings of the National Academy of Sciences. 106 (28): 11511–4. Bibcode:2009PNAS..10611511W. doi:10.1073/pnas.0905337106. PMC 2703671. PMID 20716512.
अग्रिम पठन
- Sethna, James P. (2006). "Chapter 10: Correlations, response, and dissipation". Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press. ISBN 978-0198566779.
- Radial distribution function
- Yeomans, J. M. (1992). Statistical Mechanics of Phase Transitions. Oxford Science Publications. ISBN 978-0-19-851730-6.
- Fisher, M. E. (1974). "Renormalization Group in Theory of Critical Behavior". Reviews of Modern Physics. 46 (4): 597–616. Bibcode:1974RvMP...46..597F. doi:10.1103/RevModPhys.46.597.
- C. Domb, M.S. Green, J.L. Lebowitz editors, Phase Transitions and Critical Phenomena, vol. 1-20 (1972–2001), Academic Press.