पहला मौलिक रूप

From Vigyanwiki
Revision as of 13:24, 3 May 2023 by Manidh (talk | contribs)

विभेदक ज्यामिति में, प्रथम मूलभूत रूप त्रि-आयामी यूक्लिडियन अंतरिक्ष में [[सतह (अंतर ज्यामिति)]] के स्पर्शरेखा स्थान पर आंतरिक उत्पाद है, जो R3 डॉट उत्पाद से विहित रूप से प्रेरित होता है। यह सतह की वक्रता एवं मीट्रिक गुणों की गणना की अनुमति देता है जैसे कि लंबाई एवं क्षेत्रफल परिवेशी स्थान के अनुरूप प्रथम मौलिक रूप रोमन अंक I द्वारा निरूपित किया जाता है।


परिभाषा

मान लीजिए X(u, v) पैरामीट्रिक सतह है। फिर दो स्पर्शरेखा सदिशों का आंतरिक उत्पाद होता है।

जहां E, F, एवं G प्रथम मौलिक रूप के गुणांक हैं।

प्रथम मौलिक रूप को सममित मैट्रिक्स के रूप में दर्शाया जा सकता है।


आगे का अंकन

जब प्रथम मौलिक रूप केवल तर्क के साथ लिखा जाता है, तो यह उस सदिश के आंतरिक उत्पाद को स्वयं के साथ दर्शाता है।

प्रथम मौलिक रूप प्रायः मीट्रिक टेंसर के आधुनिक अंकन में लिखा जाता है। गुणांक तब gij के रूप में लिखा जा सकता है।
इस टेन्सर के घटकों की गणना स्पर्शरेखा सदिशों X1 एवं X2 के अदिश गुणनफल के रूप में की जाती है।
i, j = 1, 2 के लिए नीचे उदाहरण देखें।

लंबाई एवं क्षेत्रफल की गणना करना

प्रथम मौलिक रूप पूर्ण रूप से सतह के मीट्रिक गुणों का वर्णन करता है। इस प्रकार, यह सतह पर वक्रों की लंबाई एवं सतह पर क्षेत्रों के क्षेत्रों की गणना करने में सक्षम बनाता है। रेखा तत्व ds को प्रथम मौलिक रूप के गुणांकों के रूप में व्यक्त किया जा सकता है।

शास्त्रीय क्षेत्र तत्व द्वारा दिया गया dA = |Xu × Xv| du dv लैग्रेंज की पहचान की सहायता से प्रथम मौलिक रूप के संदर्भ में व्यक्त किया जा सकता है।


उदाहरण: वृत्त पर वक्र

R3 में इकाई क्षेत्र पर वृत्ताकार वक्र को पैरामीट्रिज्ड किया जा सकता है।

u एवं v उत्पत्ति के संबंध में X(u,v) को भिन्न करना
आंशिक डेरिवेटिव के डॉट उत्पाद को लेकर प्रथम मौलिक रूप के गुणांक पाए जा सकते हैं।

इसलिए


वृत्त पर वक्र की लंबाई

इकाई क्षेत्र का भूमध्य रेखा द्वारा दिया गया पैरामीट्रिज्ड वक्र है।

t के साथ 0 से 2π तक इस वक्र की लंबाई की गणना करने के लिए रेखा तत्व का उपयोग किया जा सकता है।


गोले पर क्षेत्रफल

क्षेत्र तत्व का उपयोग इकाई क्षेत्र के क्षेत्रफल की गणना करने के लिए किया जा सकता है।


गाऊसी वक्रता

किसी सतह की गॉसियन वक्रता किसके द्वारा दी जाती है।

जहाँ L, M, एवं N दूसरे मूलभूत रूप के गुणांक हैं।

कार्ल फ्रेडरिक गॉस के प्रमेय एग्रेगियम में कहा गया है कि सतह के गॉसियन वक्रता को केवल प्रथम मौलिक रूप एवं इसके डेरिवेटिव के संदर्भ में व्यक्त किया जा सकता है, जिससे K वास्तव में सतह का आंतरिक अपरिवर्तनीय हो। प्रथम मौलिक रूप के संदर्भ में गॉसियन वक्रता के लिए स्पष्ट अभिव्यक्ति गॉसियन वक्रता ब्रियोस्ची सूत्र द्वारा प्रदान की जाती है।

यह भी देखें

बाहरी संबंध