पेडल त्रिकोण

From Vigyanwiki
Revision as of 17:41, 3 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक त्रिभुज ABC काले रंग में, बिंदु P से लंबवत् नीले रंग में, और प्राप्त पैडल त्रिभुज LMN लाल रंग में रहता हैं।

ज्यामिति में, त्रिकोण के किनारों पर बिंदुओं (ज्यामिति) को प्रक्षेपित करके पेडल त्रिकोण प्राप्त किया जाता है।

विशेषतः मुख्य रूप से किसी त्रिभुज ABC और बिंदु P पर विचार करने पर A, B, C शीर्षों में ऐसा नहीं होता है। इस प्रकार P से त्रिभुज की तीनों भुजाओं पर लम्ब डाले जाने पर इन्हें बनाने की आवश्यकता हो सकती है, अर्थात विस्तारित करने की आवश्यकता हो सकती हैं। इस प्रकार लेबल L, M, N P से लाइनों के प्रतिच्छेदन को BC, AC, AB के साथ पेडल त्रिकोण तब एलएमएन के रूप में देख सकते हैं।

यदि ABC अधिक त्रिभुज नहीं है, तो P लंबकेंद्र है, इस स्थिति में LMN के कोण 180°-2A, 180°-2B और 180°-2C के समान रहते हैं।[1]

इस प्रकार उपयोग किए गए त्रिकोण ABC के सापेक्ष चुने गए बिंदु P का स्थान कुछ विशेष स्थितियों को जन्म देता है:

  • यदि P = लंबकेन्द्र, तो LMN = लंब त्रिभुज हैं।
  • यदि P = अंतःकेन्द्र, तो LMN = अंतःस्पर्श त्रिभुज हैं।
  • यदि P = परिकेंद्र, तो LMN = औसत दर्जे का त्रिभुज हैं।
इस स्थिति के अनुसार जब P परिवृत्त पर है, और पेडल त्रिकोण रेखा (लाल) में पतित हो जाता है।

यदि P त्रिभुज के परिवृत्त पर है, तो LMN रेखा में निर्गत हो जाते हैं। रॉबर्ट सिमसन के पश्चात इसे 'पेडल लाइन' या 'सिमसन लाइन' कहा जाता है।

किसी आंतरिक बिंदु P के पैडल त्रिकोण के शीर्ष पर जैसा कि शीर्ष आरेख में दिखाया गया है, मूल त्रिभुज की भुजाओं को इस प्रकार से विभाजित करते हैं जैसे कि कार्नोट की लंबवत प्रमेय को संतुष्ट करने के लिए कार्नोट की प्रमेय का इस प्रकार उपयोग किया जाता हैं:[2]

ट्रिलिनियर निर्देशांक

यदि P के त्रिरेखीय निर्देशांक p: q: r हैं, तो P के पेडल त्रिभुज के शीर्ष L,M,N द्वारा दिए गए हैं

  • L = 0: q + p cos C: r + p cos B
  • M = p + q cos C: 0: r + q cos A
  • N = p + r cos B: q + r cos A: 0

एंटीपेडल त्रिकोण

P के 'प्रतिपाद त्रिभुज' का शीर्ष, L', B से होकर BP पर लंब और C से होकर CP पर लंब का प्रतिच्छेदन बिंदु है। इसके अन्य शीर्ष, M 'और N', समान रूप से बनाए गए हैं। ट्रिलिनियर निर्देशांक किसके द्वारा दिए जाते हैं

  • L' = - (q + p cos C)(r + p cos B): (r + p cos B)(p + q cos C): (q + p cos C)(p + r cos B)
  • M' = (r + q cos A)(q + p cos C): − (r + q cos A)(p + q cos C): (p + q cos C)(q + r cos A)
  • N' = (q + r cos A)(r + p cos B): (p + r cos B)(r + q cos A): − (p + r cos B)(q + r cos A)

उदाहरण के लिए, बाह्य त्रिकोण के परिकेंद्र का एंटीपेडल त्रिकोण उपयोग किया जाता हैं।

मान लीजिए कि P किसी भी विस्तारित भुजा BC, CA, AB और P-1 पर स्थित नहीं है, तो इस स्थिति में P के समकोणीय संयुग्म को दर्शाता है। P-1 का पैडल त्रिकोण, P के एंटीपेडल त्रिकोण के लिए होमोथेटिक परिवर्तन का रूप है। इस प्रकार समरूप केंद्र (जो त्रिकोण केंद्र है यदि और केवल यदि P त्रिभुज केंद्र है) त्रिरेखीय निर्देशांक में दिया गया बिंदु है

AP (P + Q Cos C) (P + R Cos B): BQ (Q + R Cos A) (Q + P Cos C): CR (R + P Cos B) (R + Q Cos A)

P−1 के पेडल त्रिकोण और P के एंटीपेडल त्रिकोण के क्षेत्रों का उत्पाद त्रिभुज ABC के क्षेत्रफल के वर्ग के बराबर रहता हैं।

पेडल वृत्त

बिंदु का पेडल वृत्त और इसके आइसोगोनल संयुग्म समान हैं।

पेडल वृत्त को पेडल त्रिकोण की परिधि के रूप में परिभाषित किया गया है। ध्यान दें कि पैडल वृत्त को त्रिभुज के परिवृत्त पर स्थित बिंदुओं के लिए परिभाषित नहीं किया गया है।

आइसोगोनल संयुग्मों का पेडल वृत्त

किसी भी बिंदु के लिए त्रिभुज के परिवृत्त पर स्थित नहीं होता है, यहाँ पर यह ज्ञात रहता है कि और इसके आइसोगोनल संयुग्म सामान्य पेडल वृत्त को प्रदर्शित करते हैं, जिसका केंद्र इन दो बिंदुओं का मध्य बिंदु रहता हैं।[3]

संदर्भ

  1. "Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2020-10-31.
  2. Alfred S. Posamentier; Charles T. Salkind (1996). ज्यामिति में चुनौतीपूर्ण समस्याएं. New York: Dover. pp. 85-86. ISBN 9780486134864. OCLC 829151719.
  3. Honsberger, Ross (1995-01-01). उन्नीसवीं और बीसवीं सदी के यूक्लिडियन ज्यामिति में एपिसोड. The Mathematical Association of America. ISBN 978-0-88385-951-3.


बाहरी संबंध