स्थानीय इष्टतम

From Vigyanwiki
Revision as of 21:36, 3 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
स्थानीय इष्टतम बिंदुओं के आसपास आकर्षण बेसिन
डिग्री 4 का बहुपद: दाईं ओर का गर्त एक स्थानीय न्यूनतम है और बाईं ओर का गर्त वैश्विक न्यूनतम है। केंद्र में चोटी एक स्थानीय अधिकतम है।

अनुप्रयुक्त गणित और कंप्यूटर विज्ञान में, अनुकूलन समस्या का एक स्थानीय इष्टतम एक समाधान है जो प्रत्याशी समाधान के निकट (गणित) के अंदर इष्टतम (या तो अधिकतम या न्यूनतम) है। यह एक वैश्विक इष्टतम के विपरीत है, जो समाधान स्थान के बीच इष्टतम समाधान है, न कि केवल मानो के एक विशेष निकट में महत्वपूर्ण रूप से, एक वैश्विक इष्टतम आवश्यक रूप से एक स्थानीय इष्टतम है, किंतु एक स्थानीय इष्टतम एक वैश्विक इष्टतम नहीं है।

निरंतर डोमेन

जब अनुकूलित किया जाने वाला कार्य निरंतर कार्य होता है, तो स्थानीय ऑप्टिमा खोजने के लिए कलन को नियोजित करना संभव हो सकता है। यदि पहला व्युत्पन्न परीक्षण हर जगह उपस्थित है, तो इसे शून्य के सामान्य किया जा सकता है; यदि कार्य में किसी कार्य का एक सीमित समूह डोमेन है, तो एक स्थानीय इष्टतम होने के लिए यह आवश्यक और पर्याप्त नियम हैं कि यह इस समीकरण को संतुष्ट करता है। फिर दूसरा व्युत्पन्न परीक्षण बिंदु के लिए एक स्थानीय अधिकतम या स्थानीय न्यूनतम होने के लिए एक आवश्यक और पर्याप्त स्थिति प्रदान करता है।

खोज विधि

अनुकूलन समस्याओं को हल करने के लिए स्थानीय खोज (अनुकूलन) या पहाड़ी चढ़ाई के विधि प्रारंभिक विन्यास से प्रारंभ होते हैं और बार-बार निकट विन्यास में सुधार करते हैं। खोज स्थान में एक प्रक्षेपवक्र उत्पन्न होता है, जो एक स्थानीय इष्टतम के लिए एक प्रारंभिक बिंदु को मैप करता है, जहां स्थानीय खोज अटकी हुई है (कोई सुधार करने वाला निकट उपलब्ध नहीं है)। इसलिए खोज स्थान को आकर्षण के बेसिन में विभाजित किया गया है, प्रत्येक में सम्मिलित हैं सभी प्रारंभिक बिंदु जिनमें स्थानीय खोज प्रक्षेपवक्र के अंतिम बिंदु के रूप में एक स्थानीय इष्टतम दिया गया है। एक स्थानीय इष्टतम को अलग किया जा सकता है (गैर-स्थानीय रूप से इष्टतम बिंदुओं से घिरा हुआ) या एक पठार (गणित) का भाग , समान मान के एक से अधिक बिंदुओं वाला स्थानीय रूप से इष्टतम क्षेत्र है।

यदि हल की जाने वाली समस्या में कार्य के समान मान वाले सभी स्थानीय इष्टतम बिंदु हैं अनुकूलित, स्थानीय खोज प्रभावी रूप से वैश्विक समस्या को हल करती है: स्थानीय इष्टतम खोजने से विश्व स्तर पर इष्टतम समाधान मिलता है।

अनुकूलतम का स्थान निकट (गणित) पर निर्भर है जैसा कि स्थानीय खोज पद्धति द्वारा परिभाषित किया गया है जिसका उपयोग कार्य को अनुकूलित करने के लिए किया जाता है।

कई स्थितियों में, स्थानीय ऑप्टिमा वैश्विक समस्या के उप-इष्टतम समाधान प्रदान करते हैं, और खोज जारी रखने के लिए एक स्थानीय खोज पद्धति को संशोधित करने की आवश्यकता है स्थानीय इष्टतमता से परे; उदाहरण के लिए पुनरावृत्त स्थानीय खोज, टैबू खोज, प्रतिक्रियाशील खोज अनुकूलन और तैयार किए हुयी धातु पे पानी चढाने की कला देखें ।

यह भी देखें

  • अधिकतम या न्यूनतम


श्रेणी:गणितीय अनुकूलन