अंतराकारिता रिंग
गणित में, एक एबेलियन समूह एक्स के एंडोमोर्फिज्म एक अंगूठी (गणित) बनाते हैं। इस रिंग को एक्स का 'एंडोमोर्फिज्म रिंग' कहा जाता है, जिसे एंड (एक्स) द्वारा निरूपित किया जाता है; X के सभी समरूपताओं का स्वयं में समुच्चय। एंडोमोर्फिज्म का जोड़ स्वाभाविक रूप से पॉइंटवाइज # पॉइंटवाइज ऑपरेशंस तरीके और समारोह रचना के जरिए मल्टीप्लिकेशन में पैदा होता है। इन ऑपरेशनों का उपयोग करते हुए, एक एबेलियन समूह के एंडोमोर्फिज्म का सेट एक (यूनिटल) रिंग बनाता है, जिसमें शून्य आकारिकी होती है। योज्य पहचान और पहचान मानचित्र के रूप में पहचान तत्व के रूप में।[1][2] शामिल कार्यों को संदर्भ में एक समरूपता के रूप में परिभाषित किया गया है, जो विचाराधीन वस्तु की श्रेणी (गणित) पर निर्भर करता है। एंडोमोर्फिज्म रिंग फलस्वरूप वस्तु के कई आंतरिक गुणों को कूटबद्ध करता है। चूंकि परिणामी वस्तु अक्सर कुछ रिंग आर पर एक बीजगणित (रिंग थ्योरी) होती है, इसे 'एंडोमोर्फिज्म बीजगणित' भी कहा जा सकता है।
एक एबेलियन समूह पूर्णांकों के वलय के ऊपर एक मॉड्यूल (गणित) के समान है, जो कि छल्लों की श्रेणी में प्रारंभिक वस्तु है। इसी तरह से, यदि R कोई क्रमविनिमेय वलय है, तो R-मॉड्यूल के एंडोमोर्फिज्म समान स्वयंसिद्धों और व्युत्पत्ति द्वारा एक वलय के ऊपर एक बीजगणित बनाते हैं। विशेष रूप से, यदि R एक फ़ील्ड (गणित) है, तो इसके मॉड्यूल M सदिश स्थल हैं और उनके एंडोमोर्फिज़्म रिंग एक फ़ील्ड R पर बीजगणित हैं।
विवरण
होने देना (A, +) एक आबेली समूह हो और हम A से A में समूह समाकारिता पर विचार करते हैं। फिर इस तरह के दो समाकारिता के योग को एक अन्य समूह समाकारिता उत्पन्न करने के लिए बिंदुवार परिभाषित किया जा सकता है। स्पष्ट रूप से, दो ऐसी समरूपताएँ f और g दी गई हैं, f और g का योग समाकारिता है f + g : x ↦ f(x) + g(x). इस ऑपरेशन के तहत एंड (ए) एक एबेलियन समूह है। समरूपता की संरचना के अतिरिक्त संचालन के साथ, अंत (ए) गुणात्मक पहचान वाला एक वलय है। यह रचना स्पष्ट है fg : x ↦ f(g(x)). गुणात्मक पहचान ए पर पहचान समरूपता है।
यदि समुच्चय A एबेलियन समूह नहीं बनाता है, तो उपरोक्त निर्माण आवश्यक रूप से योज्य मानचित्र नहीं है, क्योंकि तब दो समरूपताओं का योग एक समरूपता नहीं होना चाहिए।[3] एंडोमोर्फिज्म का यह सेट निकट-अंगूठी का एक विहित उदाहरण है जो कि वलय नहीं है।
गुण
- एंडोमोर्फिज्म के छल्ले में हमेशा योगात्मक और गुणक पहचान तत्व होते हैं, क्रमशः शून्य मानचित्र और पहचान कार्य।
- एंडोमोर्फिज्म रिंग सहयोगी हैं, लेकिन आमतौर पर गैर-कम्यूटेटिव रिंग|गैर-कम्यूटेटिव।
- यदि एक मॉड्यूल सरल मॉड्यूल है, तो इसका एंडोमोर्फिज्म रिंग एक विभाजन की अंगूठी है (इसे कभी-कभी शूर लेम्मा कहा जाता है)।[4]
- एक मॉड्यूल अविघटनीय मॉड्यूल है अगर और केवल अगर इसकी एंडोमोर्फिज्म रिंग में कोई गैर-तुच्छ निष्क्रिय तत्व (रिंग थ्योरी) नहीं है।[5] यदि मॉड्यूल एक इंजेक्शन मॉड्यूल है, तो अपघटन क्षमता स्थानीय रिंग होने के कारण एंडोमोर्फिज्म रिंग के बराबर है।[6]
- एक अर्ध-सरल मॉड्यूल के लिए, एंडोमोर्फिज्म रिंग एक वॉन न्यूमैन नियमित रिंग है।
- एक गैर-शून्य सही एकतरफा मॉड्यूल के एंडोमोर्फिज्म रिंग में या तो एक या दो अधिकतम सही आदर्श होते हैं। यदि मॉड्यूल आर्टिनियन, नोथेरियन, प्रोजेक्टिव या इंजेक्शन है, तो एंडोमोर्फिज्म रिंग का एक अद्वितीय अधिकतम आदर्श है, ताकि यह एक स्थानीय रिंग हो।
- एक आर्टिनियन वर्दी मॉड्यूल की एंडोमोर्फिज़्म रिंग एक स्थानीय रिंग है।[7]
- परिमित रचना लंबाई वाले मॉड्यूल का एंडोमोर्फिज्म रिंग एक अर्द्ध प्राथमिक अंगूठी है।
- एक निरंतर मॉड्यूल या असतत मॉड्यूल की एंडोमोर्फिज्म रिंग एक साफ रिंग है।[8]
- यदि एक आर मॉड्यूल बारीक रूप से उत्पन्न और प्रक्षेपी है (जो कि एक पूर्वज है), तो मॉड्यूल की एंडोमोर्फिज्म रिंग और आर सभी मोरिटा अपरिवर्तनीय गुणों को साझा करते हैं। मोरिटा सिद्धांत का एक मूलभूत परिणाम यह है कि आर के समतुल्य सभी वलय पूर्वजों के एंडोमोर्फिज्म वलय के रूप में उत्पन्न होते हैं।
उदाहरण
- आर मॉड्यूल (गणित) की श्रेणी में आर-मॉड्यूल एम की एंडोमोर्फिज्म रिंग केवल आर मॉड्यूल समरूपता का उपयोग करेगी, जो आमतौर पर एबेलियन समूह होमोमोर्फिज्म का एक उचित उपसमुच्चय है।[9] जब एम एक सूक्ष्म रूप से उत्पन्न मॉड्यूल प्रक्षेपी मॉड्यूल होता है, तो एंडोमोर्फिज्म रिंग मॉड्यूल श्रेणियों के मोरिटा तुल्यता के लिए केंद्रीय होता है।
- किसी भी एबेलियन समूह के लिए , , क्योंकि कोई भी मैट्रिक्स में की एक प्राकृतिक समरूपता संरचना वहन करती है निम्नलिखित नुसार:
- इस समरूपता का उपयोग बहुत सारे गैर-कम्यूटेटिव एंडोमोर्फिज्म रिंगों के निर्माण के लिए कर सकते हैं। उदाहरण के लिए: , तब से .
- और कब एक क्षेत्र है, एक विहित समरूपता है , इसलिए , यानी ए की एंडोमोर्फिज्म रिंग -वेक्टर स्पेस की पहचान मैट्रिक्स रिंग के साथ की जाती है। एन-बाय-एन मेट्रिसेस की रिंग में प्रविष्टियां होती हैं .[10] अधिक आम तौर पर, मुक्त मॉड्यूल का एंडोमोर्फिज्म बीजगणित स्वाभाविक रूप से है -द्वारा- अंगूठी में प्रविष्टियों के साथ matrices .
- अंतिम बिंदु के एक विशेष उदाहरण के रूप में, एकता के साथ किसी भी वलय R के लिए, End(RR) = R, जहां R के तत्व बाएं गुणन द्वारा R पर कार्य करते हैं।
- सामान्य तौर पर, एंडोमोर्फिज्म रिंग्स को किसी भी पूर्ववर्ती श्रेणी की वस्तुओं के लिए परिभाषित किया जा सकता है।
टिप्पणियाँ
- ↑ Fraleigh (1976, p. 211)
- ↑ Passman (1991, pp. 4–5)
- ↑ Dummit & Foote, p. 347)
- ↑ Jacobson 2009, p. 118.
- ↑ Jacobson 2009, p. 111, Prop. 3.1.
- ↑ Wisbauer 1991, p. 163.
- ↑ Wisbauer 1991, p. 263.
- ↑ Camillo et al. 2006.
- ↑ Abelian groups may also be viewed as modules over the ring of integers.
- ↑ Drozd & Kirichenko 1994, pp. 23–31.
संदर्भ
- Camillo, V. P.; Khurana, D.; Lam, T. Y.; Nicholson, W. K.; Zhou, Y. (2006), "Continuous modules are clean", J. Algebra, 304 (1): 94–111, doi:10.1016/j.jalgebra.2006.06.032, ISSN 0021-8693, MR 2255822
- Drozd, Yu. A.; Kirichenko, V.V. (1994), Finite Dimensional Algebras, Berlin: Springer-Verlag, ISBN 3-540-53380-X
- Dummit, David; Foote, Richard, Algebra
- Fraleigh, John B. (1976), A First Course In Abstract Algebra (2nd ed.), Reading: Addison-Wesley, ISBN 0-201-01984-1
- "Endomorphism ring", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Jacobson, Nathan (2009), Basic algebra, vol. 2 (2nd ed.), Dover, ISBN 978-0-486-47187-7
- Passman, Donald S. (1991), A Course in Ring Theory, Pacific Grove: Wadsworth & Brooks/Cole, ISBN 0-534-13776-8
- Wisbauer, Robert (1991), Foundations of module and ring theory, Algebra, Logic and Applications, vol. 3 (Revised and translated from the 1988 German ed.), Philadelphia, PA: Gordon and Breach Science Publishers, pp. xii+606, ISBN 2-88124-805-5, MR 1144522 A handbook for study and research