एलेक्जेंडरसन
अलेक्जेंडर की योजना, जिसे अलेक्जेंडर योजना के रूप में भी जाना जाता है, ज्यामितीय सांस्थिति में एक मूल परिणाम है, जिसका नाम जेम्स वाडेल अलेक्जेंडर II के नाम पर रखा गया है।
कथन
n-विमीय गेंद (गणित) के दो होमियोमोर्फिज्म जो सीमा (सांस्थिति) क्षेत्र पर सहमत हैं वे समस्थानिक हैं।
अधिक सामान्यतः, Dn के दो होमोमोर्फिज्म जो सीमा पर समस्थानिक हैं वे समस्थानिक हैं।
प्रमाण
आधार विभक्ति: हर होमोमोर्फिज़्म जो सीमा को ठीक करता है, सीमा के सापेक्ष पहचान के लिए समस्थानिक है।
अगर को संतुष्ट करता है तो, फिर f को पहचान से जोड़ने वाली एक समस्थानिक निम्न द्वारा दिया जाता है
विलियम थर्स्टन ने इसे सभी उलझनों को एक बिंदु पर जोड़ने की बात कही है। मूल 2-पृष्ठ लेख में, जे. डब्ल्यू. अलेक्जेंडर बताते हैं कि प्रत्येक के लिए रूपान्तरण एक अलग मापक्रम पर को प्रतिकृत करता है, त्रिज्या की चक्रिका पर, इस प्रकार के रूप में यह अपेक्षा करना उचित है अस्मिता में विलीन हो जाता है।
सूक्ष्मता यह है कि पर, गायब हो जाता है : जर्म (गणित) मूल रूप से विस्तारित संस्करण से अस्मिता के लिए "कूदता" है। समस्थेयता में प्रत्येक चरण को सुचारू (सुचारू संक्रमण) किया जा सकता है, लेकिन समस्थेयता (समग्र मानचित्र) में एक विलक्षणता है। यह रेखांकित करता है कि अलेक्जेंडर योजना एक खंडशः रैखिक बहुविध संरचना है, लेकिन निर्बाध नहीं है।
सामान्य स्थिति: सीमा पर समस्थानिक का तात्पर्य समस्थानिक से है
यदि दो होमियोमॉर्फिज़्म हैं जो पर सहमत हैं , तब पर अस्मिता है, इसलिए हमारे पास अस्मिता से एक आइसोटोप है। मानचित्र तब से तक एक समस्थानिक है।
त्रिज्यीय विस्तारण
कुछ लेखक अलेक्जेंडर योजना शब्द का उपयोग इस कथन के लिए करते हैं कि प्रत्येक होमोमोर्फिज्म का संपूर्ण गेंद के एक होमोमोर्फिज्म तक बढ़ाया जा सकता है।
हालांकि, ऊपर चर्चा किए गए परिणाम की तुलना में इसे सिद्ध करना बहुत आसान है: इसे त्रिज्यीय विस्तारण (या शंक्वाकार) कहा जाता है और यह भी सच है कि खंडशः रैखिक रूप से, लेकिन सुचारू रूप से नहीं कहा जाता है।
स्थूलतः, मान लीजिये एक होमोमोर्फिज्म है, फिर
- गेंद के होमियोमोर्फिज्म को परिभाषित करता है।
विजातीय वृत्त
सुचारु त्रिज्यीय विस्तार की विफलता और PL त्रिज्यीय विस्तार की सफलता विजातीय वृत्त के माध्यम से विकृत वृत्त प्राप्त करें।
यह भी देखें
संदर्भ
- हैनसेन, वैगन लुंड्सगार्ड (1989). ब्रैड्स और कवरिंग: चयनित विषय. लंदन मैथमेटिकल सोसायटी छात्र ग्रंथ. Vol. 18. कैंब्रिज: कैम्ब्रिज यूनिवर्सिटी प्रेस. doi:10.1017/CBO9780511613098. ISBN 0-521-38757-4. MR 1247697.
- अलेक्जेंडर, J. W. (1923). "एक एन-कोशिका के विरूपण पर". संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही. 9 (12): 406–407. Bibcode:1923PNAS....9..406A. doi:10.1073/pnas.9.12.406. PMC 1085470. PMID 16586918.