कम्यूटेटर उपसमूह

From Vigyanwiki
Revision as of 08:24, 3 May 2023 by alpha>Shikhav

गणित में, विशेष रूप से अमूर्त बीजगणित में, कम्यूटेटर उपसमूह या समूह (गणित) का व्युत्पन्न उपसमूह समूह के सभी कम्यूटेटरों द्वारा समूह का उपसमूह (गणित) उत्पन्न करता है।[1][2]

कम्यूटेटर उपसमूह महत्वपूर्ण है क्योंकि यह सबसे छोटा सामान्य उपसमूह है जैसे कि इस उपसमूह द्वारा मूल समूह का अंश समूह एबेलियन समूह है। दूसरे शब्दों में, एबेलियन है यदि और केवल यदि में का कम्यूटेटर उपसमूह सम्मिलित है। तो कुछ अर्थों में यह उपाय प्रदान करता है कि समूह एबेलियन होने से कितनी दूर है; कम्यूटेटर उपसमूह जितना बड़ा होता है, समूह उतना ही कम एबेलियन होता है।

कम्यूटेटर

समूह G के तत्व और के लिए, और का कम्यूटेटर है। कम्यूटेटर पहचान तत्व e के बराबर है यदि और केवल यदि अर्थात् यदि और केवल यदि और बदलाव करते हैं। सामान्य रूप में, .

चूंकि, संकेतन कुछ सीमा तक स्वैच्छिक है और कम्यूटेटर के लिए गैर-समतुल्य संस्करण परिभाषा है जिसमें समीकरण: के दाहिने हाथ की ओर व्युत्क्रम हैं जिस स्थिति में किन्तु इसके अतिरिक्त होता है।

कुछ g और h के लिए रूप के G के एक तत्व को कम्यूटेटर कहा जाता है। पहचान तत्व e = [e, e] सदैव एक कम्यूटेटर है, और यह एकमात्र कम्यूटेटर है यदि और केवल यदि G एबेलियन है।

यहां कुछ सरल किन्तु उपयोगी कम्यूटेटर पहचान हैं, समूह G के किसी भी तत्व s, g, h के लिए सच है:

  • जहाँ (या, क्रमशः, ) द्वारा का संयुग्मी वर्ग है
  • किसी भी समूह समरूपता , के लिए।

पहली और दूसरी पहचान का अर्थ है कि G में कम्यूटेटर का समुच्चय (गणित) व्युत्क्रम और संयुग्मन के अनुसार बंद है। यदि तीसरी पहचान में हम H = G लेते हैं, तो हम पाते हैं कि G के किसी भी एंडोमोर्फिज्म के अनुसार कम्यूटेटर का समुच्चय स्थिर है। यह वास्तव में दूसरी पहचान का एक सामान्यीकरण है, क्योंकि हम दूसरी पहचान प्राप्त करने के लिए f को G, पर संयुग्मन ऑटोमोर्फिज्म के रूप में ले सकते हैं।

चूँकि, दो या दो से अधिक कम्यूटेटर के उत्पाद को कम्यूटेटर होने की आवश्यकता नहीं है। a,b,c,d पर मुक्त समूह में सामान्य उदाहरण [a,b][c,d] है। यह ज्ञात है कि परिमित समूह का कम से कम क्रम जिसके लिए दो कम्यूटेटर उपस्थित हैं जिनका उत्पाद कम्यूटेटर नहीं है 96 है; वास्तव में इस गुण के साथ क्रम 96 के दो गैर-समरूपी समूह हैं।[3]


परिभाषा

यह G के कम्यूटेटर उपसमूह (जिसे व्युत्पन्न उपसमूह भी कहा जाता है, और या की परिभाषा को प्रेरित करता है) : यह सभी कम्यूटेटरों द्वारा उत्पन्न उपसमूह है।

यह इस परिभाषा से इस प्रकार है कि कोई भी तत्व स्वरूप का है

कुछ प्राकृतिक संख्या के लिए , जहां gi और hi G के तत्व हैं। इसके अतिरिक्त, चूंकि , G में कम्यूटेटर उपसमूह सामान्य है। किसी भी समरूपता f: G → H के लिए,

,

जिससे .

इससे पता चलता है कि कम्यूटेटर उपसमूह को समूहों की श्रेणी पर ऑपरेटर के रूप में देखा जा सकता है, जिसके कुछ निहितार्थ नीचे दिए गए हैं। इसके अतिरिक्त, G = H लेने से पता चलता है कि G के प्रत्येक एंडोमोर्फिज्म के अनुसार कम्यूटेटर उपसमूह स्थिर है: अर्थात्, [G,G] जी का पूरी तरह से विशिष्ट उपसमूह है, जो सामान्यता से अधिक शक्तिशाली है।

कम्यूटेटर उपसमूह को समूह के तत्वों g के समुच्चय के रूप में भी परिभाषित किया जा सकता है जिसमें उत्पाद g = g1 g2 ... gk के रूप में अभिव्यक्ति होती है जिसे पहचान देने के लिए पुनर्व्यवस्थित किया जा सकता है।

व्युत्पन्न श्रृंखला

इस निर्माण को पुनरावृत्त किया जा सकता है:

समूह दूसरे व्युत्पन्न उपसमूह, तीसरे व्युत्पन्न उपसमूह, और आगे, और अवरोही सामान्य श्रृंखला कहलाते हैं

व्युत्पन्न श्रृंखला कहलाती है। इसे निचली केंद्रीय श्रृंखला के साथ भ्रमित नहीं होना चाहिए, जिसकी शर्तें है।

परिमित समूह के लिए, व्युत्पन्न श्रृंखला पूर्ण समूह में समाप्त होती है, जो तुच्छ हो भी सकती है और नहीं भी हो सकती है। अनंत समूह के लिए, व्युत्पन्न श्रृंखला को परिमित अवस्था में समाप्त करने की आवश्यकता नहीं होती है, और कोई भी इसे अनंत क्रमिक संख्याओं के लिए ट्रांसफिनिट पुनरावर्तन के माध्यम से जारी रख सकता है, जिससे ट्रांसफिनिट व्युत्पन्न श्रृंखला प्राप्त होती है, जो अंततः समूह के पूर्ण कोर पर समाप्त हो जाती है।

एबेलियनाइजेशन

एक समूह दिया गया है, एक भागफल समूह एबेलियन है यदि और केवल

भागफल एक एबेलियन समूह है जिसे या का एबेलियनाइजेशन कहा जाता है।[4] इसे सामान्यतः या द्वारा दर्शाया जाता है।

माप की उपयोगी श्रेणीबद्ध व्याख्या है। अर्थात से एक एबेलियन समूह के समरूपता के लिए सार्वभौमिक है: किसी भी एबेलियन समूह और समूह के समरूपता के लिए एक अद्वितीय समरूपता उपस्थित है जैसे कि । सार्वभौमिक माप गुणों द्वारा परिभाषित वस्तुओं के लिए सदैव की तरह, यह विहित समरूपता तक एबेलियनाइजेशन की विशिष्टता को दर्शाता है, जबकि स्पष्ट निर्माण अस्तित्व दिखाता है।

एबेलियनाइजेशन फ़ंक्टर, एबेलियन समूहों की श्रेणी से समूहों की श्रेणी में सम्मिलित किए जाने वाले फ़ंक्टर का सहायक फ़ंक्टर है। एबेलियनाइज़ेशन फ़ंक्टर Grp → Ab का अस्तित्व श्रेणी Ab को समूहों की श्रेणी की परावर्तनी उपश्रेणी बनाता है, जिसे पूर्ण उपश्रेणी के रूप में परिभाषित किया गया है, जिसके समावेशन फ़ंक्टर के पास बायाँ जोड़ है।

की एक अन्य महत्वपूर्ण व्याख्या के रूप में है, जो अभिन्न गुणांकों के साथ का पहला होमोलॉजी समूह समरूपता है।

समूहों के वर्ग

समूह एक एबेलियन समूह है यदि और केवल यदि व्युत्पन्न समूह तुच्छ [G,G] = {e} है। समतुल्य रूप से, यदि और केवल यदि समूह अपने एबेलियनाइजेशन के बराबर है। समूह के एबेलियनाइजेशन की परिभाषा के लिए ऊपर देखें।

समूह आदर्श समूह है यदि और केवल यदि व्युत्पन्न समूह समूह के बराबर: [G,G] = G है। समान रूप से, यदि और केवल यदि समूह का एबेलियनाइजेशन तुच्छ है। यह एबेलियन के विपरीत है।

N में कुछ n के लिए वाले समूह को समाधान करने योग्य समूह कहा जाता है; यह एबेलियन से कमजोर है, जो स्थिति n = 1 है।

N में सभी n के लिए वाले समूह को अघुलनशील समूह कहा जाता है।

किसी क्रमिक संख्या के लिए वाला एक समूह, संभवतः अनंत, एक हाइपोबेलियन समूह कहलाता है; यह समाधान करने योग्य से कमजोर है, जो कि α परिमित (प्राकृतिक संख्या) स्थिति है।

परीपूर्ण समूह

जब भी एक समूह ने उपसमूह को अपने बराबर, व्युत्पन्न किया है, इसे एक पूर्ण समूह कहा जाता है। इसमें एक निश्चित क्षेत्र के लिए गैर-एबेलियन साधारण समूह और विशेष रैखिक समूह सम्मिलित हैं।

उदाहरण

  • किसी एबेलियन समूह का कम्यूटेटर उपसमूह तुच्छ समूह है।
  • सामान्य रैखिक समूह का कम्यूटेटर उपसमूह क्षेत्र (गणित) या विभाजन की रिंग k पर विशेष रैखिक समूह के बराबर होता है परन्तु या k दो तत्वों वाला परिमित क्षेत्र नहीं है।[5]
  • प्रत्यावर्ती समूह A4 का कम्यूटेटर उपसमूह क्लेन चार समूह है।
  • सममित समूह Sn का कम्यूटेटर उपसमूह वैकल्पिक समूह An है.
  • चतुर्भुज समूह Q = {1, -1, i, -i, j, -j, k, -k} का कम्यूटेटर उपसमूह [Q,Q] = {1, -1} है।

बाहर से माप

चूँकि व्युत्पन्न उपसमूह अभिलक्षणिक उपसमूह है, इसलिए G का कोई भी स्वरूपवाद अपभ्रंशीकरण के स्वारूपवाद को प्रेरित करता है। चूँकि एबेलियनाइज़ेशन एबेलियन है, आंतरिक ऑटोमोर्फिज्म तुच्छ रूप से कार्य करते हैं, इसलिए यह माप उत्पन्न करता है


यह भी देखें

  • समाधान करने योग्य समूह
  • निलपोटेंट समूह
  • उपसमूह H/H' का एबेलियनाइज़ेशन उपसमूह H < G उपसमूह (G:H) के परिमित सूचकांक का आर्टिन स्थानांतरण (समूह सिद्धांत)#Artin स्थानांतरण T(G,H) है।

टिप्पणियाँ

  1. Dummit & Foote (2004)
  2. Lang (2002)
  3. Suárez-Alvarez
  4. Fraleigh (1976, p. 108)
  5. Suprunenko, D.A. (1976), Matrix groups, Translations of Mathematical Monographs, American Mathematical Society, Theorem II.9.4


संदर्भ


बाहरी संबंध