संरक्षित वर्तमान
This article does not cite any sources. (December 2009) (Learn how and when to remove this template message) |
भौतिकी में एक संरक्षित धारा एक धारा है, , जो निरंतरता समीकरण को संतुष्ट करता है . निरंतरता समीकरण एक संरक्षण कानून का प्रतिनिधित्व करता है, इसलिए यह नाम है।
दरअसल, वॉल्यूम पर निरंतरता समीकरण को एकीकृत करना , इतना बड़ा कि इसकी सतह के माध्यम से कोई शुद्ध धारा न हो, संरक्षण कानून की ओर ले जाता है
गेज सिद्धांत में गेज फ़ील्ड संरक्षित धाराओं से जोड़े जाते हैं। उदाहरण के लिए, विद्युत चुम्बकीय क्षेत्र आवेश संरक्षण से जुड़ता है।
संरक्षित मात्रा और समरूपता
संरक्षित धारा एक निरंतर कार्य ट्रांसलेशनल समरूपता रखने वाली मात्रा के विहित संयुग्म का प्रवाह है। संरक्षित धारा के लिए निरंतरता समीकरण एक संरक्षण कानून (भौतिकी) का एक बयान है। विहित संयुग्म मात्रा के उदाहरण हैं:
- समय और ऊर्जा - समय की सतत अनुवादात्मक समरूपता का तात्पर्य ऊर्जा के संरक्षण से है
- अंतरिक्ष और संवेग - अंतरिक्ष की निरंतर अनुवादकीय समरूपता का तात्पर्य संवेग के संरक्षण से है
- अंतरिक्ष और कोणीय गति - अंतरिक्ष की निरंतर घूर्णी समरूपता का तात्पर्य कोणीय गति के संरक्षण से है
- तरंग क्रिया चरण (लहरें) और बिजली का आवेश - वेव फंक्शन के निरंतर चरण कोण समरूपता का तात्पर्य इलेक्ट्रिक चार्ज # चार्ज का संरक्षण है
संरक्षित धाराएं सैद्धांतिक भौतिकी में एक अत्यंत महत्वपूर्ण भूमिका निभाती हैं, क्योंकि नोएदर का प्रमेय एक संरक्षित धारा के अस्तित्व को अध्ययन के तहत प्रणाली में कुछ मात्रा की समरूपता के अस्तित्व से जोड़ता है। व्यावहारिक रूप से, सभी संरक्षित धाराएँ नोथेर धाराएँ हैं, क्योंकि एक संरक्षित धारा के अस्तित्व का तात्पर्य एक समरूपता के अस्तित्व से है। संरक्षित धाराएं आंशिक अंतर समीकरणों के सिद्धांत में एक महत्वपूर्ण भूमिका निभाती हैं, क्योंकि एक संरक्षित धारा का अस्तित्व गति के स्थिरांक के अस्तित्व की ओर इशारा करता है, जो एक पत्तियों से सजाना को परिभाषित करने के लिए आवश्यक है और इस प्रकार एक एकीकृत प्रणाली है। संरक्षण कानून को 4-विचलन के लुप्त होने के रूप में व्यक्त किया गया है, जहां नोएदर चार्ज (भौतिकी) चार-वर्तमान | 4-वर्तमान का शून्य घटक बनाता है।
उदाहरण
विद्युत चुंबकत्व
आवेश संरक्षण, उदाहरण के लिए, मैक्सवेल के समीकरणों के अंकन में,
- ρ मुक्त विद्युत आवेश घनत्व है (C/m की इकाइयों में3)
- जे वर्तमान घनत्व है v के साथ आवेशों के वेग के रूप में।
समीकरण द्रव्यमान (या अन्य संरक्षित मात्रा) पर समान रूप से लागू होगा, जहां शब्द द्रव्यमान को ऊपर दिए गए विद्युत आवेश शब्द के स्थान पर प्रतिस्थापित किया गया है।
जटिल अदिश क्षेत्र
Lagrangian घनत्व
यह भी देखें
- संरक्षण कानून (भौतिकी)
- नोथेर की प्रमेय
संदर्भ
- Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). Reading, MA: Addison-Wesley. pp. 588–596. ISBN 0-201-02918-9.
- David J Griffiths (1999). Introduction to electrodynamics (Third ed.). Prentice Hall. pp. 356–357. ISBN 978-0-13-805326-0.
- Peskin, Michael E.; Schroeder, Daniel V. (1995). "Chapter I.2.2. Elements of Classical Field Theory". An Introduction to Quantum Field Theory. CRC Press. ISBN 978-0-201-50397-5.