बिंदु-सेट त्रिभुज

From Vigyanwiki

अंगूठा

यूक्लिडियन अंतरिक्ष में बिंदुओं के सेट का त्रिभुज साधारण परिसर है जो के उत्तल हल को कवर करता है और जिनके शिखर से संबंधित हैं ।[1] विमान में (ज्यामिति) (जब में बिंदुओं का सेट है ), त्रिभुज, उनके किनारों और शीर्षों सहित, त्रिभुजों से बने होते हैं। कुछ लेखकों की आवश्यकता है कि के सभी बिंदु इसके त्रिकोणासन के शीर्ष हैं।[2] इस स्थितियों में, बिंदुओं के सेट का त्रिभुज विमान में वैकल्पिक रूप से बिंदुओं के बीच अ-रेखित किनारों के अधिकतम सेट के रूप में परिभाषित किया जा सकता है। समतल में, त्रिभुज तलीय सीधी-रेखा ग्राफ़ के विशेष स्थितियां हैं।

विशेष रूप से रोचक प्रकार का त्रिकोण डेलाउने त्रिभुज है। वे वोरोनोई आरेख के दोहरे पॉलीटॉप हैं। बिंदुओं के सेट का डेलाउने त्रिभुज विमान में गेब्रियल ग्राफ, निकटतम ग्राफ और न्यूनतम फैले पेड़ सम्मलित हैं ।

त्रिभुजों के कई अनुप्रयोग होते हैं और कुछ मानदंडों के अनुसार दिए गए बिंदु सेट के अच्छे त्रिभुजों को खोजने में रुचि होती है, उदाहरण के लिए न्यूनतम-भार त्रिभुज । कभी-कभी विशेष गुणों के साथ त्रिभुज का होना वांछनीय होता है, उदाहरण के लिए, जिसमें सभी त्रिभुजों में बड़े कोण होते हैं (लंबे और संकीर्ण किरच त्रिकोण से बचा जाता है)।[3]समतल के बिंदुओं को जोड़ने वाले किनारों के सेट को देखते हुए, यह निर्धारित करने की समस्या है कि क्या उनमें त्रिभुज है या नहीं, एनपी-पूर्ण है।[4]

नियमित त्रिभुज

बिंदुओं के सेट के कुछ त्रिभुज के अंक उठाकर प्राप्त किया जा सकता है में (जो समन्वय जोड़ने के लिए है के प्रत्येक बिंदु पर ), बिंदुओं के उठाए गए सेट के उत्तल पतवार की गणना करके, और इस उत्तल पतवार के निचले चेहरों को वापस प्रक्षेपित करके . इस तरह से बनाए गए त्रिभुजों को नियमित त्रिकोणासन के रूप में संदर्भित किया जाता है . जब बिन्दुओं को समीकरण के परवलयज पर ले जाया जाता है , इस निर्माण का परिणाम डेलाउने त्रिभुज है . ध्यान दें कि, इस निर्माण के लिए त्रिभुज प्रदान करने के लिए, बिंदुओं के उठाए गए सेट के निचले उत्तल पतवार को साधारण पॉलीटॉप होना चाहिए। डेलाउने त्रिभुजों के स्थितियों में, यह आवश्यक है कि नहीं के अंक ही गोले में लेट जाओ।

प्लेन में कॉम्बिनेटरिक्स

किसी भी सेट का हर त्रिकोण का विमान में अंक है त्रिकोण और किनारे कहाँ के अंकों की संख्या है के उत्तल पतवार की सीमा में . यह सीधे यूलर विशेषता तर्क से आता है।[5]


विमान में त्रिभुज बनाने के लिए एल्गोरिदम

त्रिभुज बंटवारे एल्गोरिथम: बिंदु सेट के उत्तल पतवार का पता लगाएं और इस पतवार को बहुभुज के रूप में त्रिकोणित करें। आंतरिक बिंदु चुनें और किनारों को उस त्रिकोण के तीन शीर्षों पर खींचें जिसमें यह सम्मलित है। इस प्रक्रिया को तब तक जारी रखें जब तक कि सभी आंतरिक बिंदु समाप्त न हो जाएं।[6]इंक्रीमेंटल एल्गोरिद्म : के बिंदुओं को क्रमबद्ध करें एक्स-निर्देशांक के अनुसार। पहले तीन बिंदु त्रिभुज का निर्धारण करते हैं। अगले बिंदु पर विचार करें आदेशित सेट में और इसे पहले से विचार किए गए सभी बिंदुओं से जोड़ दें जो पी को दिख रहा है। के बिंदु को जोड़ने की इस प्रक्रिया को जारी रखें समय में जब तक सभी संसाधित किया गया।[7]


विभिन्न एल्गोरिदम की समय जटिलता

निम्न तालिका विभिन्न इष्टतमता मानदंडों के तहत, विमान में बिंदु सेटों के त्रिभुजों के निर्माण के लिए समय जटिलता के परिणामों की रिपोर्ट करती है, जहां अंकों की संख्या है।

minimize maximize
minimum angle
(डेलाउने triangulation)
maximum [8] [9]
minimum area [10] [11]
maximum [11]
maximum degree NP-complete
for degree of 7 [12]
maximum eccentricity [9]
minimum edge length
(Closest pair of points problem)
NP-complete [13]
maximum [14]
(using the Convex hull)
sum of NP-hard
(Minimum-weight triangulation)
minimum height [9]
maximum slope [9]


यह भी देखें

टिप्पणियाँ

  1. De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco (2010). Triangulations, Structures for Algorithms and Applications. Algorithms and Computation in Mathematics. Vol. 25. Springer.
  2. de Berg et al. 2008, Section 9.1.
  3. de Berg, Mark; Otfried Cheong; Marc van Kreveld; Mark Overmars (2008). Computational Geometry: Algorithms and Applications (PDF). Springer-Verlag. ISBN 978-3-540-77973-5.
  4. Lloyd 1977.
  5. Edelsbrunner, Herbert; Tan, Tiow Seng; Waupotitsch, Roman (1992), "An O(n2 log n) time algorithm for the minmax angle triangulation", SIAM Journal on Scientific and Statistical Computing, 13 (4): 994–1008, CiteSeerX 10.1.1.66.2895, doi:10.1137/0913058, MR 1166172.
  6. Devadoss, O'Rourke Discrete and Computational Geometry. Princeton University Press, 2011, p. 60.
  7. Devadoss, O'Rourke Discrete and Computational Geometry. Princeton University Press, 2011, p. 62.
  8. Edelsbrunner, Tan & Waupotitsch 1990.
  9. 9.0 9.1 9.2 9.3 Bern et al. 1993.
  10. Chazelle, Guibas & Lee 1985.
  11. 11.0 11.1 Vassilev 2005.
  12. Jansen 1992.
  13. Fekete 2012.
  14. Edelsbrunner & Tan 1991.


संदर्भ