अनंत पर अतिसमतल

From Vigyanwiki
Revision as of 14:50, 5 April 2023 by alpha>Indicwiki (Created page with "{{Short description|Bespredellnitsa}} ज्यामिति में, प्रक्षेपी स्थान P के किसी भी hyperplane H क...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ज्यामिति में, प्रक्षेपी स्थान P के किसी भी hyperplane H को 'अनंत पर हाइपरप्लेन' के रूप में लिया जा सकता है। फिर सेट पूरक PH को affine अंतरिक्ष कहा जाता है। उदाहरण के लिए, अगर (x1, ..., xn, xn+1) एन-डायमेंशनल प्रोजेक्टिव स्पेस के लिए सजातीय निर्देशांक हैं, फिर समीकरण xn+1 = 0 निर्देशांक के साथ एन-डायमेंशनल एफ़िन स्पेस के लिए अनंत पर एक हाइपरप्लेन को परिभाषित करता है (x1, ..., xn). H को 'आइडियल हाइपरप्लेन' भी कहा जाता है।

इसी तरह, एक सजातीय स्थान A से शुरू करके, समानांतर (ज्यामिति) रेखाओं के प्रत्येक वर्ग को अनंत पर एक बिंदु से जोड़ा जा सकता है। समानता के सभी वर्गों पर संघ (सेट सिद्धांत) अनंत पर हाइपरप्लेन के बिंदुओं का गठन करता है। इस हाइपरप्लेन (जिसे 'आदर्श बिंदु' कहा जाता है) के बिंदुओं को A से जोड़कर इसे वास्तविक प्रोजेक्टिव स्पेस जैसे एन-डायमेंशनल प्रोजेक्टिव स्पेस में बदल देता है। RPn.

इन आदर्श बिंदुओं को जोड़कर, संपूर्ण संबधित स्थान A एक प्रक्षेपी स्थान P तक पूरा हो जाता है, जिसे A का 'प्रक्षेपी समापन' कहा जा सकता है। एस में समाहित रेखाओं की दिशाओं के अनुरूप आदर्श बिंदु। परिणामी प्रक्षेप्य उप-स्थानों को अक्सर 'अनंत' या 'आदर्श' उप-स्थानों के विपरीत, प्रक्षेपी स्थान P का परिशोधित उप-स्थान कहा जाता है, जो कि हाइपरप्लेन के उप-स्थान हैं इन्फिनिटी (हालांकि, वे प्रोजेक्टिव स्पेस हैं, affine उपक्षेत्र नहीं)।

प्रक्षेपी स्थान में, आयाम k का प्रत्येक प्रक्षेप्य उप-स्थान आदर्श हाइपरप्लेन को अनंत पर प्रक्षेपी उप-स्थान में काटता है जिसका आयाम है k − 1.

गैर-समानांतर (ज्यामिति) एफ़िन हाइपरप्लेन की एक जोड़ी आयाम के एफ़ाइन उप-स्थान पर प्रतिच्छेद करती है n − 2, लेकिन एफाइन हाइपरप्लेन की एक समानांतर जोड़ी आदर्श हाइपरप्लेन के एक प्रक्षेप्य उप-स्थान पर प्रतिच्छेद करती है (चौराहा आदर्श हाइपरप्लेन पर स्थित है)। इस प्रकार, समानांतर हाइपरप्लेन, जो एफ़िन स्पेस में नहीं मिलते हैं, अनंत पर हाइपरप्लेन के अतिरिक्त होने के कारण प्रोजेक्टिव पूर्णता में प्रतिच्छेद करते हैं।

यह भी देखें

संदर्भ

  • Albrecht Beutelspacher & Ute Rosenbaum (1998) Projective Geometry: From Foundations to Applications, p 27, Cambridge University Press ISBN 0-521-48277-1 .