मुक्त बीजगणित

From Vigyanwiki
Revision as of 17:36, 16 May 2023 by Manidh (talk | contribs)

गणित में, विशेष रूप से अमूर्त बीजगणित के क्षेत्र में जिसे अंगूठी सिद्धांत के रूप में जाना जाता है, मुक्त बीजगणित बहुपद वलय का गैर-अनुवर्ती एनालॉग है क्योंकि इसके तत्वों को गैर-कम्यूटिंग चर के साथ बहुपद के रूप में वर्णित किया जा सकता है। इसी प्रकार, बहुपद वलय को मुक्त क्रमविनिमेय बीजगणित माना जा सकता है।

परिभाषा

R के लिए क्रमविनिमेय वलय, मुक्त (सहयोगी, इकाई बीजगणित) बीजगणित (अंगूठी सिद्धांत) n अनिश्चित (चर) {X1,...,Xn} पर मुफ्त मॉड्यूल है, जिसका आधार वर्णमाला {X1,...,Xn} पर सभी शब्द (गणित) (खाली शब्द सहित, जो मुक्त बीजगणित की इकाई है)। यह R-मॉड्यूल बीजगणित (रिंग थ्योरी) बन जाता है। R-बीजगणित गुणन को निम्नानुसार परिभाषित करता है, दो आधार तत्वों का उत्पाद संबंधित शब्दों का संयोजन होता है।

एवं इस प्रकार दो मनमाना R-मॉड्यूल तत्वों का उत्पाद विशिष्ट रूप से निर्धारित होता है (क्योंकि R-बीजगणित में गुणन R-बिलिनियर होना चाहिए)। इस R-बीजगणित को RX1,...,Xn⟩ दर्शाया गया है। इस निर्माण को सरलता से मनमाना उपसमुच्चय X के अनिश्चित उपसमुच्चय के लिए सामान्यीकृत किया जा सकता है।

संक्षेप में, मनमाना उपसमुच्चय के लिए , X पर मुक्त (साहचर्य, इकाई बीजगणित) R-बीजगणित (अंगूठी सिद्धांत) है।

R-बिलिनियर गुणन के साथ जो शब्दों पर संयोजन है, जहां X*X पर मुक्त मोनोइड को दर्शाता है (अर्थात अक्षर Xi पर शब्द), मॉड्यूल के बाहरी प्रत्यक्ष योग को दर्शाता है, एवं Rw1 तत्व पर मुफ्त Rw मॉड्यूल को दर्शाता है।

उदाहरण के लिए, RX1,X2,X3,X4⟩, स्केलर α, β, γ, δ ∈ R के लिए, दो तत्वों के उत्पाद का ठोस उदाहरण है।

.

गैर-कम्यूटेटिव बहुपद अंगूठी को Xi में सभी परिमित शब्दों के मुक्त मोनोइड के R पर मोनॉइड रिंग के साथ पहचाना जा सकता है।

बहुपदों के साथ तुलना

चूंकि वर्ण {X1, ...,Xn} पर शब्द RX1,...,Xn⟩ का आधार बनते हैं, यह स्पष्ट है कि RX1, ...,Xn⟩ का कोई भी तत्व विशिष्ट रूप से लिखा जा सकता है।

जहाँ R के अवयव हैं एवं अंतत: इनमें अधिक से अवयव शून्य हैं। यह बताता है, कि क्यों RX1,...,Xn⟩ के तत्वों को प्रायः चर (या अनिश्चित) X1,...,Xn में गैर-कम्यूटेटिव बहुपद के रूप में दर्शाया जाता है। को इन बहुपदों का "गुणांक" कहा जाता है एवं R-बीजगणित RX1,...,Xn⟩ है, n अनिश्चित में R के ऊपर गैर-कम्यूटेटिव बहुपद बीजगणित कहा जाता है। ध्यान दें, कि वास्तविक बहुपद रिंग के विपरीत, चर क्रमविनिमेय संचालन नहीं करते हैं। उदाहरण के लिए, X1X2, X2X1 के समान नहीं है।

अधिक सामान्यतः, जनरेटिंग उपसमुच्चय के किसी भी उपसमुच्चय E पर मुक्त बीजगणित R⟨E⟩ का निर्माण किया जा सकता है। चूँकि छल्ले को 'Z'-अलजेब्रस के रूप में माना जा सकता है, E पर 'मुक्त रिंग' को मुक्त बीजगणित 'Z'⟨E⟩ के रूप में परिभाषित किया जा सकता है।

क्षेत्र (गणित) पर, n अनिश्चित पर मुक्त बीजगणित को n-आयामी सदिश अंतरिक्ष पर टेंसर बीजगणित के रूप में बनाया जा सकता है। अधिक सामान्य गुणांक रिंग के लिए, वही निर्माण कार्य करता है यदि हम n जनरेटिंग उपसमुच्चय पर मुफ्त मॉड्यूल लेते हैं।

E पर मुक्त बीजगणित का निर्माण प्रकृति में कार्यात्मक है एवं उपयुक्त सार्वभौमिक संपत्ति को संतुष्ट करता है। मुक्त बीजगणित फ़ैक्टर को R-बीजगणित की श्रेणी से उपसमुच्चय की श्रेणी में बुद्धिहीन ऑपरेटर के पास त्याग दिया जाता है।

विभाजन वलय पर मुक्त बीजगणित मुक्त आदर्श वलय हैं।

यह भी देखें

संदर्भ

  • Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. Vol. 137. Cambridge: Cambridge University Press. ISBN 978-0-521-19022-0. Zbl 1250.68007.
  • L.A. Bokut' (2001) [1994], "Free associative algebra", Encyclopedia of Mathematics, EMS Press