लौकिक सेंसरशिप परिकल्पना

From Vigyanwiki
Revision as of 12:46, 18 April 2023 by alpha>Indicwiki (Created page with "कमजोर और मजबूत ब्रह्मांडीय सेंसरशिप परिकल्पना सामान्य सापेक्ष...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

कमजोर और मजबूत ब्रह्मांडीय सेंसरशिप परिकल्पना सामान्य सापेक्षता में उत्पन्न होने वाली गुरुत्वाकर्षण विलक्षणता की संरचना के बारे में दो गणितीय अनुमान हैं।

आइंस्टीन के क्षेत्र समीकरण के आइंस्टीन क्षेत्र समीकरणों के समाधान में उत्पन्न होने वाली विलक्षणताएं। आइंस्टीन के समीकरण आमतौर पर घटना क्षितिज के भीतर छिपे होते हैं, और इसलिए बाकी के अंतरिक्ष समय से नहीं देखे जा सकते हैं। विलक्षणताएँ जो इतनी छिपी नहीं हैं, उन्हें 'नग्न विलक्षणता' कहा जाता है। 1969 में रोजर पेनरोज़ द्वारा कमजोर ब्रह्मांडीय सेंसरशिप परिकल्पना की कल्पना की गई थी और यह माना गया था कि ब्रह्मांड में कोई नग्न विलक्षणता मौजूद नहीं है।

मूल बातें

चूँकि विलक्षणताओं का भौतिक व्यवहार अज्ञात है, यदि विलक्षणताओं को बाकी के अंतरिक्ष-समय से देखा जा सकता है, तो कार्य-कारण टूट सकता है, और भौतिकी अपनी भविष्य कहनेवाला शक्ति खो सकती है। इस मुद्दे को टाला नहीं जा सकता, क्योंकि पेनरोज़-हॉकिंग विलक्षणता प्रमेय के अनुसार, शारीरिक रूप से उचित स्थितियों में विलक्षणता अपरिहार्य है। फिर भी, नग्न विलक्षणताओं के अभाव में, ब्रह्मांड, जैसा कि सापेक्षता के सामान्य सिद्धांत द्वारा वर्णित है, नियतत्ववाद है:[1] ब्रह्मांड के संपूर्ण विकास की भविष्यवाणी करना संभव है (संभावित रूप से विलक्षणताओं के घटना क्षितिज के अंदर छिपे हुए अंतरिक्ष के कुछ परिमित क्षेत्रों को छोड़कर), समय के एक निश्चित क्षण में केवल इसकी स्थिति को जानना (अधिक सटीक रूप से, हर जगह एक त्रि-आयामी हाइपरसफेस पर हर जगह, कॉची सतह कहा जाता है)। लौकिक सेंसरशिप परिकल्पना की विफलता नियतत्ववाद की विफलता की ओर ले जाती है, क्योंकि एक विलक्षणता के कारण भविष्य में spacelike के व्यवहार की भविष्यवाणी करना अभी तक असंभव है। लौकिक सेंसरशिप केवल औपचारिक हित की समस्या नहीं है; जब भी ब्लैक होल घटना क्षितिज का उल्लेख किया जाता है तो इसका कुछ रूप ग्रहण किया जाता है।[citation needed]

रोजर पेनरोज़ ने पहली बार 1969 में लौकिक सेंसरशिप परिकल्पना तैयार की।

परिकल्पना पहली बार 1969 में रोजर पेनरोज़ द्वारा तैयार की गई थी,[2] और यह पूरी तरह औपचारिक तरीके से नहीं बताया गया है। एक मायने में यह एक शोध कार्यक्रम प्रस्ताव से अधिक है: शोध का एक हिस्सा एक उचित औपचारिक बयान खोजना है जो शारीरिक रूप से उचित, गलत, और दिलचस्प होने के लिए पर्याप्त रूप से सामान्य हो।[3] चूंकि कथन सख्ती से औपचारिक नहीं है, इसलिए (कम से कम) दो स्वतंत्र फॉर्मूलेशन, एक कमजोर रूप और एक मजबूत रूप के लिए पर्याप्त अक्षांश है।

कमजोर और मजबूत लौकिक सेंसरशिप परिकल्पना

कमजोर और मजबूत लौकिक सेंसरशिप परिकल्पना दो अनुमान हैं जो स्पेसटाइम की वैश्विक ज्यामिति से संबंधित हैं।

कमजोर लौकिक सेंसरशिप परिकल्पना का दावा है कि भविष्य की अशक्त अनंतता से कोई विलक्षणता दिखाई नहीं दे सकती है। दूसरे शब्दों में, विलक्षणताओं को एक ब्लैक होल के घटना क्षितिज द्वारा अनंतता पर एक पर्यवेक्षक से छिपाने की आवश्यकता है। गणितीय रूप से, अनुमान बताता है कि, सामान्य प्रारंभिक डेटा के लिए, अधिकतम कॉची विकास में पूर्ण भविष्य शून्य अनंतता है।

मजबूत लौकिक सेंसरशिप परिकल्पना का दावा है कि, सामान्य रूप से, सामान्य सापेक्षता एक नियतात्मक सिद्धांत है, उसी अर्थ में शास्त्रीय यांत्रिकी एक नियतात्मक सिद्धांत है। दूसरे शब्दों में, प्रारंभिक डेटा से सभी पर्यवेक्षकों के शास्त्रीय भाग्य का अनुमान लगाया जाना चाहिए। गणितीय रूप से, अनुमान बताता है कि सामान्य कॉम्पैक्ट या एसिम्प्टोटिक रूप से फ्लैट प्रारंभिक डेटा का अधिकतम कॉची विकास नियमित रूप से लोरेंत्ज़ियन मैनिफोल्ड के रूप में स्थानीय रूप से अप्राप्य है। अपने सबसे मजबूत अर्थों में लिया गया, अनुमान एक निरंतर लोरेंट्ज़ियन कई गुना [बहुत मजबूत लौकिक सेंसरशिप] के रूप में अधिकतम कॉची विकास की स्थानीय रूप से अक्षमता का सुझाव देता है। इस सबसे मजबूत संस्करण को 2018 में मिहालिस डेफरमोस और जोनाथन लुक द्वारा केर मीट्रिक के कॉची क्षितिज के लिए अप्रमाणित, घूर्णन ब्लैक होल के लिए अस्वीकृत किया गया था।[4] दो अनुमान गणितीय रूप से स्वतंत्र हैं, क्योंकि वहां स्पेसटाइम मौजूद है जिसके लिए कमजोर ब्रह्मांडीय सेंसरशिप मान्य है लेकिन मजबूत ब्रह्मांडीय सेंसरशिप का उल्लंघन किया गया है और, इसके विपरीत, ऐसे स्पेसटाइम मौजूद हैं जिनके लिए कमजोर ब्रह्मांडीय सेंसरशिप का उल्लंघन किया गया है लेकिन मजबूत ब्रह्मांडीय सेंसरशिप मान्य है।

उदाहरण

केर मीट्रिक, द्रव्यमान के एक ब्लैक होल के अनुरूप और कोणीय गति , का उपयोग भूमध्य रेखा तक सीमित कण कक्षाओं के लिए प्रभावी क्षमता प्राप्त करने के लिए किया जा सकता है (जैसा कि रोटेशन द्वारा परिभाषित किया गया है)। यह संभावना दिखती है:Cite error: Closing </ref> missing for <ref> tag


प्रति-उदाहरण

स्केलर-आइंस्टीन समीकरणों का सटीक समाधान जो के कई योगों के लिए एक प्रति उदाहरण बनाता है 1985 में मार्क डी. रॉबर्ट्स द्वारा लौकिक सेंसरशिप परिकल्पना की खोज की गई थी:

कहाँ एक स्थिरांक है।[5]


यह भी देखें

संदर्भ

  1. Earman, J. (2007). "Aspects of Determinism in Modern Physics" (PDF). भौतिकी का दर्शन. pp. 1369–1434. Archived (PDF) from the original on 2014-05-22.
  2. Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  3. "लौकिक पैमाने पर एक शर्त, और एक रियायत, एक तरह से". New York Times. February 12, 1997.
  4. Hartnett, Kevin (17 May 2018). "गणितज्ञ ब्लैक होल को बचाने के लिए किए गए अनुमान का खंडन करते हैं". Quanta Magazine. Retrieved 29 March 2020.
  5. Roberts, M. D. (1989). "स्केलर फ़ील्ड ब्रह्मांडीय सेंसरशिप परिकल्पना के प्रति उदाहरण हैं". General Relativity and Gravitation. Springer Science and Business Media LLC. 21 (9): 907–939. Bibcode:1989GReGr..21..907R. doi:10.1007/bf00769864. ISSN 0001-7701. S2CID 121601921.


अग्रिम पठन


बाहरी संबंध