चक्रीय रूप से आदेशित समूह

From Vigyanwiki
Revision as of 16:08, 26 April 2023 by alpha>Indicwiki (Created page with "{{Short description|Group with a cyclic order respected by the group operation}} गणित में, एक चक्रीय रूप से क्रमबद्ध...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक चक्रीय रूप से क्रमबद्ध समूह एक समूह (गणित) और एक चक्रीय क्रम दोनों के साथ एक सेट (गणित) होता है, जैसे कि बाएँ और दाएँ गुणन दोनों चक्रीय क्रम को संरक्षित करते हैं।

1947 में लादिस्लाव रीगर द्वारा चक्रीय रूप से आदेशित समूहों का पहली बार गहराई से अध्ययन किया गया था।[1] वे चक्रीय समूहों का एक सामान्यीकरण हैं: अनंत चक्रीय समूह Z और परिमित चक्रीय समूह Z/n. चूँकि एक रेखीय क्रम एक चक्रीय क्रम को प्रेरित करता है, चक्रीय क्रम वाले समूह भी रैखिक रूप से आदेशित समूहों का एक सामान्यीकरण हैं: परिमेय संख्याएँ Q, वास्तविक संख्याएँ R, और इसी तरह। कुछ सबसे महत्वपूर्ण चक्रीय क्रम वाले समूह न तो पिछली श्रेणी में आते हैं: सर्कल समूह T और इसके उपसमूह, जैसे यूनिट सर्कल पर तर्कसंगत बिंदुओं का समूह

रैखिक समूहों के गुणक

चक्रीय रूप से आदेशित समूहों को भागफल समूह के रूप में चित्रित करना स्वाभाविक है: एक के पास है Zn = Z/nZ और T = R/Z. यहां तक ​​कि एक बार-रैखिक समूह जैसे Z, जब एक वृत्त में मुड़ा जाता है, तो इसके बारे में सोचा जा सकता है Z2 / Z. Rieger (1946, 1947, 1948) ने दिखाया कि यह तस्वीर एक सामान्य घटना है। किसी भी आदेशित समूह के लिए L और कोई केंद्र (समूह सिद्धांत) तत्व z जो एक अंतिम उपसमूह उत्पन्न करता है Z का L, भागफल समूह L / Z चक्रीय रूप से क्रमबद्ध समूह है। इसके अलावा, प्रत्येक चक्रीय रूप से आदेशित समूह को ऐसे भागफल समूह के रूप में व्यक्त किया जा सकता है।[2]

सर्कल समूह

Świerczkowski (1959a) दूसरी दिशा में रीगर के परिणामों पर निर्मित। एक चक्रीय रूप से आदेशित समूह को देखते हुए K और एक आदेशित समूह L, उत्पाद K × L चक्रीय रूप से क्रमबद्ध समूह है। विशेष रूप से, अगर T सर्कल समूह है और L एक आदेशित समूह है, फिर कोई भी उपसमूह T × L चक्रीय रूप से क्रमबद्ध समूह है। इसके अलावा, प्रत्येक चक्रीय रूप से आदेशित समूह को ऐसे उत्पाद के उपसमूह के रूप में व्यक्त किया जा सकता है T.[3]

एक आर्किमिडीयन समूह के अनुरूप, एक आर्किमिडीज़ समूह रूप से आदेशित समूह को ऐसे समूह के रूप में परिभाषित कर सकता है जिसमें तत्वों की कोई भी जोड़ी नहीं होती है x, y ऐसा है कि [e, xn, y] हर सकारात्मक पूर्णांक के लिए n.[3] चूंकि केवल सकारात्मक n माना जाता है, यह अपने रैखिक समकक्ष की तुलना में अधिक मजबूत स्थिति है। उदाहरण के लिए, Z अब योग्य नहीं है, क्योंकि एक के पास है [0, n, −1] हरएक के लिए n.

Świerczkowski के प्रमाण के परिणाम के रूप में, प्रत्येक आर्किमिडीज़ चक्रीय रूप से आदेशित समूह एक उपसमूह है T अपने आप।[3] यह परिणाम ओटो होल्डर के 1901 के प्रमेय के अनुरूप है कि प्रत्येक आर्किमिडीज़ रैखिक रूप से आदेशित समूह एक उपसमूह है R.[4]


टोपोलॉजी

प्रत्येक कॉम्पैक्ट जगह चक्रीय रूप से आदेशित समूह एक उपसमूह है T.

संबंधित संरचनाएं

Gluschankof (1993) ने दिखाया कि चक्रीय रूप से आदेशित समूहों की एक निश्चित उपश्रेणी, कमजोर इकाई के साथ प्रक्षेप्य आईसी-समूह, एमवी-बीजगणित की एक निश्चित उपश्रेणी के लिए श्रेणियों की समानता है, प्रक्षेप्य एमवी-बीजगणित।[5]

टिप्पणियाँ

  1. Pecinová-Kozáková 2005, p. 194.
  2. Świerczkowski 1959a, p. 162.
  3. 3.0 3.1 3.2 Świerczkowski 1959a, pp. 161–162.
  4. Hölder 1901, cited after Hofmann & Lawson 1996, pp. 19, 21, 37
  5. Gluschankof 1993, p. 261.


संदर्भ

  • Gluschankof, Daniel (1993), "Cyclic ordered groups and MV-algebras" (PDF), Czechoslovak Mathematical Journal, 43 (2): 249–263, doi:10.21136/CMJ.1993.128391, retrieved 30 April 2011
  • Hofmann, Karl H.; Lawson, Jimmie D. (1996), "A survey on totally ordered semigroups", in Hofmann, Karl H.; Mislove, Michael W. (eds.), Semigroup theory and its applications: proceedings of the 1994 conference commemorating the work of Alfred H. Clifford, London Mathematical Society Lecture Note Series, vol. 231, Cambridge University Press, pp. 15–39, ISBN 978-0-521-57669-7
  • Pecinová-Kozáková, Eliška (2005), "Ladislav Svante Rieger and His Algebraic Work", in Safrankova, Jana (ed.), WDS 2005 - Proceedings of Contributed Papers, Part I, Prague: Matfyzpress, pp. 190–197, CiteSeerX 10.1.1.90.2398, ISBN 978-80-86732-59-6
  • Świerczkowski, S. (1959a), "On cyclically ordered groups" (PDF), Fundamenta Mathematicae, 47 (2): 161–166, doi:10.4064/fm-47-2-161-166, retrieved 2 May 2011


अग्रिम पठन