तर्कसंगत किस्म

From Vigyanwiki
Revision as of 09:56, 17 May 2023 by Indicwiki (talk | contribs) (6 revisions imported from alpha:तर्कसंगत_किस्म)

गणित में, परिमेय विविधता एक दिए गए क्षेत्र (गणित) K पर बीजगणितीय विविधता है, जो K पर कुछ आयाम के प्रक्षेपी स्थान के बराबर है। इसका अर्थ यह है कि इसका कार्य क्षेत्र निम्नलिखित के लिए समरूपीय है

कुछ सम्मुच्चय के लिए सभी तर्कसंगत कार्यों का क्षेत्र अनिश्चित (परिवर्तनशील) है, जहां d विविधता की बीजगणितीय विविधता का आयाम है।

तर्कसंगतता और पैरामीटरकरण

मान लीजिए कि V आयाम d की एक संबंद्ध बीजगणितीय विविधता है जो में एक प्रमुख आदर्श I = ⟨f1, ..., fk⟩ द्वारा परिभाषित है। यदि V परिमेय है तो में n+1 बहुपद g0, ..., gn इस प्रकार है कि है। शब्दों के क्रम में, हमारे पास एक विवेकपूर्ण पैरामीटरकरण प्रकार का है।

इसके विपरीत, इस तरह के एक तर्कसंगत पैरामीटरकरण V के कार्यों के क्षेत्र के में एक क्षेत्र समरूपता को प्रेरित करता है। लेकिन यह समरूपता आवश्यक रूप से आच्छादक नहीं है। यदि इस तरह का एक मापदण्ड उपस्थित है, तो विविधता को यूनिरेशनल कहा जाता है। लूरोथ की प्रमेय (नीचे देखें) का तात्पर्य है कि अपरिमेय वक्र तर्कसंगत हैं। कैस्टेलनोवो के प्रमेय का अर्थ यह भी है कि, विशेषता शून्य में, प्रत्येक अपरिमेय सतह तर्कसंगत है।

तर्कसंगतता प्रश्न

तर्कसंगतता का प्रश्न पूछता है कि क्या दिया गया क्षेत्र विस्तार तर्कसंगत विविधता के कार्य क्षेत्र होने के अर्थ में तर्कसंगत है; इस तरह के क्षेत्र विस्तार को भी विशुद्ध रूप से पारलौकिक के रूप में वर्णित किया गया है। अधिक यथार्थत:, क्षेत्र विस्तार के लिए तर्कसंगतता प्रश्न यह है कि: उत्कृष्टता घात द्वारा दिए गए अनिश्चितताओं की संख्या में के ऊपर एक तर्कसंगत फलन क्षेत्रक के लिए समरूपी है?

इस प्रश्न के कई अलग-अलग रूप हैं, जिस तरह से क्षेत्र और का निर्माण किया जाता है उससे उत्पन्न होता है।

उदाहरण के लिए, को एक क्षेत्र होने दें, और निम्नलिखित मान लीजिये

K पर अनिश्चित हो और L को उनके द्वारा K पर उत्पन्न क्षेत्र होने दें। एक परिमित समूह G पर विचार करें जो K पर उन अनिश्चित को क्रमित करता है। मानक गैलोज़ सिद्धांत के अनुसार, इस समूह क्रिया के निश्चित बिंदुओं का सम्मुच्चय का एक उपक्षेत्र है, जिसे सामान्यतः के रूप में दर्शाया जाता है। के लिए तर्कसंगतता प्रश्न को नोएदर की समस्या कहा जाता है और पूछता है कि क्या निश्चित बिंदुओं का यह क्षेत्र K का विशुद्ध रूप से पारलौकिक विस्तार है या नहीं। गैल्वा सिद्धांत पर लेख (नोएदर 1918) में उसने समस्या का अध्ययन किया दिए गए गाल्वा समूह के साथ समीकरणों का मानकीकरण, जिसे उन्होंने "नोएदर की समस्या" में घटाया। (उन्होंने पहली बार इस समस्या का उल्लेख (नोथेर 1913) में किया था, जहां उन्होंने ई. फिशर को समस्या के लिए उत्तर्दायी ठहराया था।) उन्होंने दिखाया कि यह n = 2, 3, या 4 के लिए सही था। समस्या, n = 47 और G क्रम 47 का एक चक्रीय समूह है।

लुरोथ का प्रमेय

लुरोथ की समस्या एक चर्चित स्तिथि है, जिसे जैकब लूरोथ ने उन्नीसवीं शताब्दी में हल किया। लुरोथ की समस्या K(X) के उप-विस्तार L से संबंधित है, एकल अनिश्चित X में तर्कसंगत कार्य। ऐसा कोई भी क्षेत्र या तो K के बराबर है या तर्कसंगत भी है, यानी L = K(F) कुछ तर्कसंगत फलन F के लिए। ज्यामितीय शब्दों में यह कहा गया है कि प्रक्षेप्य रेखा से एक वक्र 'सी' तक एक गैर-निरंतर तर्कसंगत नक्शा केवल तभी हो सकता है जब 'सी' में वक्र 0 का जीनस भी हो। उस तथ्य को ज्यामितीय रूप से रीमैन-हर्विट्ज सूत्र पढ़ा जा सकता है।

हालांकि लुरोथ के प्रमेय को प्रायः एक गैर प्राथमिक परिणाम के रूप में माना जाता है, कई प्राथमिक लघु प्रमाण लंबे समय से खोजे गए हैं। ये सरल प्रमाण आदिम बहुपदों के लिए केवल क्षेत्र सिद्धांत और गॉस के लेम्मा के मूल सिद्धांतों का उपयोग करते हैं (उदाहरण देखें।[1]).

एकता

एक क्षेत्र K पर एक अपरिमेय विविधता V एक तर्कसंगत विविधता का प्रभुत्व है, इसलिए इसका कार्य क्षेत्र K(V) परिमित प्रकार के शुद्ध पारलौकिक क्षेत्र में निहित है (जिसे K(V) पर परिमित घात के रूप में चुना जा सकता है यदि K अनंत है)। लुरोथ की समस्या के समाधान से पता चलता है कि बीजगणितीय वक्रों के लिए, परिमेय और अपरिमेय समान हैं, और कैस्टेलनोवो के प्रमेय का अर्थ है कि जटिल सतहों के लिए अपरिमेय का तात्पर्य तर्कसंगत है, क्योंकि दोनों को अंकगणितीय जीनस और दूसरे प्लुरिजेनस दोनों के लुप्त होने की विशेषता है। जरिस्की सतह विशेषता p > 0 में कुछ उदाहरण (ज़ारिस्की सतहें) पाए जो अपरिमेय हैं लेकिन तर्कसंगत नहीं हैं। क्लेमेंस & ग्रीफिथ (1972) ने दिखाया कि एक घन तीन गुना सामान्य रूप से एक तर्कसंगत विविधता नहीं है, जो तीन आयामों के लिए एक उदाहरण प्रदान करता है कि अतार्किकता का अर्थ तर्कसंगतता नहीं है। उनके काम में एक मध्यवर्ती जैकबियन का प्रयोग किया गया था।

इस्कोवस्की & मानिन (1971) ने दिखाया कि सभी गैर-एकवचन क्वार्टिक तीन गुना अपरिमेय हैं, हालांकि उनमें से कुछ अपरिमेय हैं। आर्टिन & ममफोर्ड (1972) ने अपने तीसरे कोहोलॉजी समूह में गैर-तुच्छ मरोड़ के साथ कुछ अपरिमेय 3-गुना पाया, जिसका अर्थ है कि वे तर्कसंगत नहीं हैं।

किसी भी क्षेत्र K के लिए, जानोस कोल्लार ने 2000 में प्रमाणित किया कि कम से कम 2 आयाम की एक निर्बाध घन सतह अपरिमेय है यदि इसमें K पर एक बिंदु परिभाषित है। यह त्रिविमीय सतहों के स्तिथि से प्रारम्भ होने वाले कई शास्त्रीय परिणामों में सुधार है (जो हैं एक बीजगणितीय बंद होने पर तर्कसंगत प्रकार)। प्रकार के अन्य उदाहरण जिन्हें अपरिमेय दिखाया गया है, घटता के मोडुली स्थल की कई स्तिथि हैं।[2]

तर्कसंगत रूप से जुड़ी विविधता

एक तर्कसंगत रूप से जुड़ी विविधता (या अनियंत्रित विविधता) वी बीजगणितीय रूप से बंद क्षेत्र पर एक प्रक्षेपीय बीजगणितीय विविधता है जैसे कि प्रत्येक दो बिंदुओं के माध्यम से प्रक्षेपीय रेखा से नियमित मानचित्र की छवि v में पारित होता है। समतुल्य रूप से, एक विविधता तर्कसंगत रूप से जुड़ी हुई है यदि प्रत्येक दो बिंदु विविधता में निहित तर्कसंगत वक्र से जुड़े हुए हैं। [3] यह परिभाषा केवल पथ की प्रकृति से पथ जुड़ाव के रूप में भिन्न है, लेकिन बहुत भिन्न है, क्योंकि केवल बीजगणितीय वक्र जो तर्कसंगत रूप से जुड़े हुए हैं वे तर्कसंगत हैं।

प्रक्षेपीय रिक्त स्थान समेत प्रत्येक तर्कसंगत विविधता तर्कसंगत रूप से जुड़ी हुई है, लेकिन वार्तालाप भ्रामक है। तर्कसंगत रूप से जुड़े प्रकार का वर्ग इस प्रकार तर्कसंगत प्रकारों के वर्ग का सामान्यीकरण है। असमान प्रकार तर्कसंगत रूप से जुड़े हुए हैं, लेकिन यह ज्ञात नहीं है कि वार्तालाप होती है या नहीं है।

निश्चित रूप से तर्कसंगत प्रकार

एक प्रकार V को स्थिर रूप से तर्कसंगत कहा जाता है यदि कुछ के लिए तर्कसंगत है। इस प्रकार कोई भी तर्कसंगत विविधता, परिभाषा के अनुसार, स्थायी रूप से तर्कसंगत है। ब्यूविल et al. (1985) द्वारा निर्मित उदाहरण दिखाते हैं कि इसका विलोम असत्य है।

श्रेडर (2018) ने दिखाया कि बहुत ही सामान्य ऊनविम पृष्ठ स्थायी रूप से तर्कसंगत नहीं हैं, परंतु v की घात (बीजगणितीय ज्यामिति) कम से कम हो।

यह भी देखें

टिप्पणियाँ

  1. Bensimhoun, Michael (May 2004). "लुरोथ के प्रमेय का एक और प्रारंभिक प्रमाण" (PDF). Jerusalem. {{cite journal}}: Cite journal requires |journal= (help)
  2. János Kollár (2002). "क्यूबिक हाइपरसर्फ्स की एकरूपता". Journal of the Institute of Mathematics of Jussieu. 1 (3): 467–476. arXiv:math/0005146. doi:10.1017/S1474748002000117. MR 1956057. S2CID 6775041.
  3. Kollár, János (1996), Rational Curves on Algebraic Varieties, Berlin, New York: Springer-Verlag.


संदर्भ