पोंसलेट की क्लोजर प्रमेय

From Vigyanwiki
Revision as of 09:46, 28 April 2023 by alpha>Indicwiki (Created page with "{{Use American English|date = February 2019}} {{Short description|Theorem of 2D geometry}} {{Use mdy dates|date = February 2019}} Image:PonceletPorism.gif|thumb|right|n = 3...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

n = 3 के लिए पोंसलेट के छिद्र का चित्रण, एक त्रिभुज जो एक वृत्त में खुदा हुआ है और दूसरे को घेरता है।

ज्यामिति में, पोंसेलेट के बंद होने की प्रमेय, जिसे पोंसेलेट के पोरिज़्म के रूप में भी जाना जाता है, में कहा गया है कि जब भी एक बहुभुज एक शांकव खंड में खुदा हुआ होता है और दूसरे को घेरता है, तो बहुभुज को बहुभुजों के एक अनंत परिवार का हिस्सा होना चाहिए जो कि सभी में खुदा हुआ है और एक ही सीमा में है। दो शांकव।[1][2] इसका नाम फ्रांसीसी इंजीनियर और गणितज्ञ जीन-विक्टर पोंसेलेट के नाम पर रखा गया है, जिन्होंने 1822 में इसके बारे में लिखा था;[3] हालाँकि, त्रिकोणीय मामले की खोज काफी पहले 1746 में विलियम चैपल (सर्वेक्षक)सर्वेक्षणकर्ता) द्वारा की गई थी।[4]

पोंसेलेट के छिद्र को एक अण्डाकार वक्र का उपयोग करके एक तर्क द्वारा सिद्ध किया जा सकता है, जिसका बिंदु एक शंकु के लिए एक रेखा स्पर्शरेखा के संयोजन का प्रतिनिधित्व करता है और दूसरे शंकु के साथ उस रेखा का एक क्रॉसिंग बिंदु है।

कथन

माना C और D दो समतल शांकव हैं। यदि किसी दिए गए n > 2 के लिए, एक n-पक्षीय बहुभुज खोजना संभव है, जो एक साथ C में खुदा हुआ है (जिसका अर्थ है कि इसके सभी कोने C पर स्थित हैं) और D के चारों ओर परिचालित हैं (जिसका अर्थ है कि इसके सभी किनारे स्पर्शरेखा हैं D), तो उनमें से कई को असीम रूप से खोजना संभव है। C या D का प्रत्येक बिंदु एक ऐसे बहुभुज का शीर्ष या स्पर्शरेखा (क्रमशः) है।

यदि शांकव वृत्त हैं, तो वे बहुभुज जो एक वृत्त में खुदे हुए हैं और दूसरे के चारों ओर परिचालित हैं, द्विकेंद्रित बहुभुज कहलाते हैं, इसलिए पोंसेलेट के छिद्र के इस विशेष मामले को यह कहकर अधिक संक्षिप्त रूप से व्यक्त किया जा सकता है कि प्रत्येक द्विकेंद्रित बहुभुज द्विकेंद्रित के अनंत परिवार का हिस्सा है। समान दो वृत्तों के संबंध में बहुभुज।[5]: p. 94 

सबूत स्केच

C और D को जटिल प्रक्षेपी तल 'P' में वक्र के रूप में देखें2</उप>। सरलता के लिए, मान लें कि C और D अनुप्रस्थ रूप से मिलते हैं (जिसका अर्थ है कि दोनों का प्रत्येक प्रतिच्छेदन बिंदु एक साधारण क्रॉसिंग है)। फिर बेज़ाउट के प्रमेय द्वारा, दो वक्रों के प्रतिच्छेदन C ∩ D में चार जटिल बिंदु होते हैं। डी में मनमाना बिंदु डी के लिए, चलो ℓd d पर d की स्पर्श रेखा हो। X को C × D की उप-किस्म होने दें जिसमें (c,d) ऐसा हो कि ℓd सी के माध्यम से गुजरता है। दिया हुआ c, (c,d) ∈ X के साथ d की संख्या 1 है यदि c ∈ C ∩ D और 2 अन्यथा। इस प्रकार प्रक्षेपण एक्स → सी ≃ 'पी'1 X को डिग्री 2 कवर के रूप में प्रस्तुत करता है जो 4 बिंदुओं से ऊपर फैला हुआ है, इसलिए X एक अण्डाकार वक्र है (एक बार जब हम X पर एक आधार बिंदु तय कर लेते हैं)। होने देना एक्स का एक सामान्य (सी, डी) दूसरे बिंदु (सी, डी ') को उसी पहले समन्वय के साथ भेजना शामिल है। एक निश्चित बिंदु के साथ एक दीर्घवृत्ताकार वक्र का कोई भी समावेश, जब समूह कानून में व्यक्त किया जाता है, तो कुछ p के लिए x → p - x का रूप होता है, इसलिए यह रूप है। इसी तरह, प्रोजेक्शन एक्स → डी एक डिग्री 2 मोर्फिज्म है, जो सी और डी दोनों के स्पर्शरेखा के डी पर संपर्क बिंदुओं पर फैला हुआ है, और संबंधित इनवोल्यूशन कुछ q के लिए x → q − x रूप है। इस प्रकार रचना एक्स पर अनुवाद है। यदि की शक्ति एक निश्चित बिंदु है, वह शक्ति ही पहचान होनी चाहिए। सी और डी की भाषा में वापस अनुवादित, इसका मतलब है कि यदि एक बिंदु सी ∈ सी (एक संबंधित डी के साथ सुसज्जित) एक कक्षा को जन्म देता है जो बंद हो जाता है (यानी, एक एन-गॉन देता है), तो ऐसा हर बिंदु करता है। पतित मामले जिनमें C और D अनुप्रस्थ नहीं हैं, एक सीमा तर्क से अनुसरण करते हैं।

यह भी देखें

संदर्भ

  1. Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
  2. King, Jonathan L. (1994). "एक उपाय की तलाश में तीन समस्याएं". Amer. Math. Monthly. 101: 609–628. doi:10.2307/2974690.
  3. Poncelet, Jean-Victor (1865) [1st. ed. 1822]. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain (in français) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317.
  4. Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I", Archive for History of Exact Sciences, 70 (1): 1–122, doi:10.1007/s00407-015-0163-y, MR 3437893
  5. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
  • Bos, H. J. M.; Kers, C.; Oort, F.; Raven, D. W. "Poncelet's closure theorem". Expositiones Mathematicae 5 (1987), no. 4, 289–364.


बाहरी संबंध